Racks Helical	m = 1.5	ZA-30
Racks Helical	m = 2	ZA-31
Racks Helical	m = 3	ZA-32
Racks Helical	m = 4	ZA-33
Racks Helical	m = 5	ZA-34
Racks Helical	m = 6	ZA-35
Racks Helical	m = 8	ZA-36
Racks Helical	m = 10	ZA-37
Racks Helical	m = 12	ZA-38
Racks Straight	m = 1	ZB-36
Racks Straight	m = 1.5	ZB-37
Racks Straight	m = 2	ZB-38
Racks Straight	m = 2.5	ZB-39
Racks Straight	m = 3	ZB-40
Racks Straight	m = 4	ZB-41
Racks Straight	m = 5	ZB-42
Racks Straight	m = 6	ZB-43
Racks Straight	m = 8	ZB-44
Racks Straight	m = 10	ZB-45
Racks Straight	m = 12	ZB-46
Integrated Racks	m = 2	ZC-15
Integrated Racks	m = 3	ZC-16
Integrated Racks	m = 4	ZC-17
Integrated Racks	p = 5 mm	ZC-18
Integrated Racks	p = 10 mm	ZC-19
Integrated Racks	p = 13.33 mm	ZC-20
Calculation, Instruction		ZD-2
Calculation Example	Travelling Operation	ZD-3
Calculation Example	Lifting Operation	ZD-4
Actual size of modular gearing according to DIN 867		ZD-5
The values given in the load table are based upon uniform, smooth operation, $K_{Hß}=1.0$ and reliable grease lubrication. Since, in practice, the applications are very diverse, it is important to consider the given conditions by using appropriate factors S_{B}, K_{A}, $L_{Kßß}$ and f_{n} (see below).

Formulas for Determining the Tangential Force

\[
a = \frac{\nu}{t_{b}} \quad [m/s^2]
\]

\[
F_{u} = \frac{m \cdot g + m \cdot a}{1000} \quad [kN] \quad \text{(for lifting axle)}
\]

\[
F_{u} = \frac{m \cdot g \cdot \mu + m \cdot a}{1000} \quad [kN] \quad \text{(for driving axle)}
\]

\[
F_{u \text{ perm.}} = \frac{F_{u \text{ Tab}}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{Kßß}} \quad [kN]
\]

Formula dimensions see page ZD-3

The Condition $F_{u} < F_{u \text{ perm.}}$ Must be Fulfilled.

Load Factor K_{A}

<table>
<thead>
<tr>
<th>Drive</th>
<th>Uniform</th>
<th>Medium Shocks</th>
<th>Heavy Shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>1.00</td>
<td>1.25</td>
<td>1.75</td>
</tr>
<tr>
<td>Light Shocks</td>
<td>1.25</td>
<td>1.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Medium Shocks</td>
<td>1.50</td>
<td>1.75</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Safety Coefficient S_{B}

The safety coefficient should be allowed for according to experience ($S_{B} = 1.1$ to 1.4).

Life-Time Factor f_{n}

considering of the peripheral speed of the pinion and lubrication.

<table>
<thead>
<tr>
<th>Peripheral Speed of Gearing</th>
<th>Continuous</th>
<th>Daily</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/sec</td>
<td>m/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>30</td>
<td>0.85</td>
<td>0.95</td>
</tr>
<tr>
<td>1.0</td>
<td>60</td>
<td>0.85</td>
<td>1.10</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>2.0</td>
<td>120</td>
<td>1.05</td>
<td>1.30</td>
</tr>
<tr>
<td>3.0</td>
<td>180</td>
<td>1.10</td>
<td>1.50</td>
</tr>
<tr>
<td>5.0</td>
<td>300</td>
<td>1.25</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Linear Load Distribution Factor $L_{Kßß}$

The linear load distribution factor considers the contact stress, while it describes unintegrated load distribution over the tooth width ($L_{Kßß} = \sqrt{K_{Hß}}$).

- $L_{Kßß} = 1.1$ for counter bearing, e.g. Torque Supporter
- $L_{Kßß} = 1.2$ for preloaded bearings on the output shaft e.g. ATLANTA HT, HP and E servo-worm gear unit, BG bevel-gear unit
- $L_{Kßß} = 1.5$ for unpreloaded bearings on the output shaft e.g. ATLANTA B servo-worm gear unit
Calculation Example

Values Given

- Mass to be Moved: \(m = 820 \text{ kg} \)
- Speed: \(v = 2 \text{ m/s} \)
- Acceleration Time: \(t_b = 1 \text{ s} \)
- Acceleration Due to Gravity: \(g = 9.81 \text{ m/s}^2 \)
- Coefficient of Friction: \(\mu = 0.1 \)
- Load Factor: \(K_A = 1.5 \)
- Life-Time Factor: \(f_n = 1.05 \text{ (cont. lubrication)} \)
- Safety Coefficient: \(S_B = 1.2 \)
- Linear Load: \(L_{KH} = 1.5 \)

Calculation Process

\[
a = \frac{v}{t_b} \quad a = \frac{2}{1} = 2 \text{ m/s}^2
\]

\[
F_u = \frac{m \cdot g \cdot \mu + m \cdot a}{1000}
\]

\[
F_u = \frac{820 \cdot 9.81 \cdot 0.1 + 820 \cdot 2}{1000} = 2.44 \text{ kN}
\]

Condition

\(F_{u \text{ zul./per.}} > F_u \); \(4.05 \text{ kN} > 2.44 \text{ kN} \) = > fulfilled

Result: Rack 27 30 101 Page ZB-13

Pinion 24 35 220 Page ZB-23 case hardened

Your Calculation

Values Given

- Mass to be Moved: \(m = \) kg
- Speed: \(v = \) m/s
- Acceleration Time: \(t_b = \) s
- Acceleration Due to Gravity: \(g = 9.81 \text{ m/s}^2 \)
- Coefficient of Friction: \(\mu = \)
- Load Factor: \(K_A = \)
- Life-Time Factor: \(f_n = \)
- Safety Coefficient: \(S_B = \)
- Linear Load: \(L_{KH} = \)

Calculation Process

\[
a = \frac{v}{t_b} \quad a = \frac{\text{[value]}}{1} = \text{[value]} \text{ m/s}^2
\]

\[
F_u = \frac{m \cdot g \cdot \mu + m \cdot a}{1000} \quad F_u = \frac{\text{[value]}}{1000} = \text{[value]} \text{ kN}
\]

Permissible Feed Force \(F_{u \text{ Tab}} \)

\[
F_{u \text{ zul./per.}} = \frac{F_{u \text{ Tab}}}{K_A \cdot S_B \cdot f_n \cdot L_{KH}}
\]

\[
F_{u \text{ zul./per.}} = \frac{11.5 \text{ kN}}{1.5 \cdot 1.2 \cdot 1.05 \cdot 1.5} = 4.05 \text{ kN}
\]

Condition

\(F_{u \text{ zul./per.}} > F_u \); \(4.05 \text{ kN} > 2.44 \text{ kN} \) = > fulfilled

Result: Rack 27 30 101 Page ZB-13

Pinion 24 35 220 Page ZB-23 case hardened
Calculation Example

Values Given

- **Lifting Operation**
 - Mass to be Moved: \(m = 300 \text{ kg} \)
 - Speed: \(v = 1.08 \text{ m/s} \)
 - Acceleration Time: \(t_b = 0.7 \text{ s} \)
 - Acceleration Due to Gravity: \(g = 9.81 \text{ m/s}^2 \)
 - Load Factor: \(K_A = 1.2 \)
 - Life-Time Factor: \(f_n = 1.1 \) (Cont. Lubrication)
 - Safety Coefficient: \(S_B = 1.2 \)
 - Linear Load Distribution Factor: \(L_{KH\beta} = 1.2 \)

Calculation Process

\[
a = \frac{v}{t_b} = \frac{1.08}{0.27} = 4 \text{ m/s}^2
\]

\[
F_u = \frac{m \cdot g + m \cdot a}{1000} = \frac{300 \cdot 9.81 + 300 \cdot 4}{1000} = 4.1 \text{ kN}
\]

Assumed feed force: rack C45, ind. hardened, helical, module 2, pinion 16MnCr5, case hardened, 20 teeth, page ZA-31 with \(F_{u,tab} = 12 \text{ kN} \)

\[
F_{u,tab} = K_A \cdot S_B \cdot f_n \cdot L_{KH\beta} = 11.5 \text{ kN}
\]

\[
F_{u,zul./per.} = \frac{F_{u,tab}}{K_A \cdot S_B \cdot f_n \cdot L_{KH\beta}} = 5.9 \text{ kN}
\]

Condition

\(F_{u,zul./per.} > F_u ; 6.0 \text{ kN} > 4.1 \text{ kN} \) => fulfilled

Result: Rack 29 20 105 Page ZA-7

Pinion 24 29 520 Page ZA-24

Your Calculation

Values Given

- **Lifting Operation**
 - Mass to be Moved: \(m = \underline{\text{__________}} \text{ kg} \)
 - Speed: \(v = \underline{\text{__________}} \text{ m/s} \)
 - Acceleration Time: \(t_b = \underline{\text{__________}} \text{ s} \)
 - Acceleration Due to Gravity: \(g = \underline{\text{__________}} \text{ m/s}^2 \)
 - Load Factor: \(K_A = \underline{\text{__________}} \)
 - Life-Time Factor: \(f_n = \underline{\text{__________}} \)
 - Safety Coefficient: \(S_B = \underline{\text{__________}} \)
 - Linear Load Distribution Factor: \(L_{KH\beta} = \underline{\text{__________}} \)

Calculation Process

\[
a = \frac{v}{t_b} = \underline{\text{__________}} \text{ m/s}^2
\]

\[
F_u = \frac{m \cdot g + m \cdot a}{1000} \quad F_{u, erf./req.} = \underline{\text{__________}} \text{ kN}
\]

Permissible Feed Force \(F_{u,tab} \)

\[
F_{u,zul./per.} = \frac{F_{u,tab}}{K_A \cdot S_B \cdot f_n \cdot L_{KH\beta}} = \underline{\text{__________}} \text{ kN}
\]

Condition

\(F_{u,zul./per.} > F_u ; \underline{\text{kN}} > \underline{\text{kN}} \) => fulfilled

Result: Rack 29 20 105 Page ZA-7

Pinion 24 29 520 Page ZA-24