The values given in the load table are based upon uniform, smooth operation, $\mathrm{K}_{\mathrm{HB}}=1.0$ and reliable grease lubrication. Since, in practice, the applications are very diverse, it is important to consider the given conditions by using appropriate factors S_{B}, $K_{A}, L_{K H B}$ and f_{n} (see below).

Formulas for Determining the Tangential Force

$a=\frac{v}{t_{b}}$
$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$F_{u}=\frac{m \cdot g+m \cdot a}{1000}$ (for lifting axie)
[kN]
$F_{u}=\frac{m \cdot g \cdot \mu+m \cdot a}{1000}$ (for driving axle) $[\mathrm{kN}]$
$F_{u \text { perm. }}=\frac{F_{u \text { Tab }}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{K H B}}$
[kN]

Formula dimensions see page ZD-3

The Condition $F_{u}<F_{u \text { perm. }}$. Must be Fulfilled.

Load Factor K_{A}

Drive	Type of load from the machines to be driven		
	Uniform	Medium Shocks	Heavy Shocks
Uniform		1.25	1.75
Light Shocks	1.25	1.50	2.00
Medium Shocks	1.50	1.75	2.25

Safety Coefficient \mathbf{S}_{B}

The safety coefficient should be allowed for according to experience ($S_{B}=1.1$ to 1.4).

Life-Time Factor f_{n}

considering of the peripheral speed of the pinion and lubrication.

Lubrication		Continuous	Daily	Monthly
Peripheral of Gearing				
m/sec	$\mathrm{m} / \mathrm{min}$			
0.5	30	0.85	0.95	
1.0	60	0.95	1.10	from
1.5	90	1.00	1.20	3
2.0	120	1.05	1.30	to
3.0	180	1.10	1.50	10
5.0	300	1.25	1.90	

Linear Load Distribution Factor $\mathrm{L}_{\text {KHB }}$

The linear load distribution factor considers the contact stress, while it describes unintegrated load distribution over the tooth width $\left(\mathrm{L}_{K H B}=\sqrt{\mathrm{K}_{H B}}\right)$.
$L_{K H B}=1.1$ for counter bearing, e.g. Torque Supporter
$=1.2$ for preloaded bearings on the output shaft e.g. ATLANTA HT, HP and E servo-worm gear unit, BG bevel-gear unit
$=1.5$ for unpreloaded bearings on the output shaft e.g. ATLANTA B servo-worm gear unit

Calculation Example

Values Given

\otimes Travelling Operation

| Mass to be Moved | $m=820 \mathrm{~kg}$ |
| :--- | :--- | :--- |
| Speed | $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$ |
| Acceleration Time | $\mathrm{t}_{\mathrm{b}}=1 \mathrm{~s}$ |
| Acceleration Due to Gravity $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ | |
| Coefficient of Friction | $\mu=0.1$ |
| Load Factor | $\mathrm{K}_{\mathrm{A}}=1.5$ |
| Life-Time Factor | $\mathrm{f}_{\mathrm{n}}=1.05$ (cont. Iubrication) |
| Safety Coefficient | $\mathrm{S}_{\mathrm{B}}=1.2$ |
| Linear Load | $\mathrm{L}_{\mathrm{KHB}}=1.5$ |

Calculation Process

Results
$\begin{array}{lcc}a & =\frac{v}{t_{b}} & a=\frac{2}{1}\end{array}=2 \mathrm{~m} / \mathrm{s}^{2}$
Assumed feed force: rack C 45 , ind. hardened, straight tooth, module 3, pinion 16 MnCr 5 , case hardened, 20 teeth, page C-46 with Futab $=11.5 \mathrm{kN}$

$$
\begin{aligned}
F_{u \text { zul./per. }}= & \frac{F_{u \text { Tab }}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{K H \beta}} ; \\
& F_{u \text { zul./per. }}=\frac{11.5 \mathrm{kN}}{1.5 \cdot 1.2 \cdot 1.05 \cdot 1.5}=4.05 \mathrm{kN}
\end{aligned}
$$

Condition

F $_{\mathrm{u} \text { zul./per. }}>\mathrm{F}_{\mathrm{u}} ; 4.05 \mathrm{kN}>2.44 \mathrm{kN}$	$=>$ fulfilled	
Result:	Rack	3430100
	Page C-64	
	Pinion	2435220
	Page C-40	
Case-Hardened		

Your Calculation

Values Given

\otimes Travelling Operation

Coefficient of Friction $\quad \mu=$

Load Factor $\quad \mathrm{K}_{\mathrm{A}}=$ \qquad
Life-Time Factor
$f_{n}=$ \qquad
Safety Coefficient
$\mathrm{S}_{\mathrm{B}}=$ \qquad
Linear Load
Distribution Factor
$L_{K H \beta}=$ \qquad

Calculation Process

Results

$$
\begin{array}{ll}
a=\frac{v}{t_{b}} & a=\square=\square \mathrm{m} / \mathrm{s}^{2} \\
F_{u}=\frac{m \cdot g \cdot \mu+m \cdot a}{1000} ; & F_{u}=\frac{1000}{}=\square \mathrm{kN}
\end{array}
$$

Permissible Feed Force F_{u} Tab
$F_{u \text { zul./per. }}=\frac{F_{u \text { Tab }}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{K H \beta}}$;

$$
F_{u \text { zul. /per. }}=
$$

\qquad $=$ \qquad kN

Condition

$F_{\mathrm{u} \text { zul./per. }}>\mathrm{F}_{\mathrm{u}} ; \quad \ldots \quad \mathrm{kN}>\ldots \quad \mathrm{kN} \quad=>$ fulfilled

Calculation Example

Values Given

O Lifting Operation

Mass to be Moved	$m=300 \mathrm{~kg}$
Speed	$\mathrm{v}=1.08 \mathrm{~m} / \mathrm{s}$
Acceleration Time	$\mathrm{t}_{\mathrm{b}}=0.27 \mathrm{~s}$
Acceleration Due to Gravity g	$=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Load Factor	$\mathrm{K}_{\mathrm{A}}=1.2$
Life-Time Factor	$\mathrm{f}_{\mathrm{n}}=1.1$ (Cont. Lubrication)
Safety Coefficient	$\mathrm{S}_{\mathrm{B}}=1.2$
Linear Load	$\mathrm{L}_{\mathrm{KH} \beta}=1.2$
Distribution Factor	

Calculation Process

Results

$a=\frac{v}{t_{b}}$	$a=\frac{1.08}{0.27}$	$=4 \mathrm{~m} / \mathrm{s}^{2}$
$F_{u}=\frac{m \cdot g+m \cdot a}{1000}$	$u=\frac{300 \cdot 9.81+300 \cdot 4}{1000}$	$=4.1 \mathrm{kN}$

Assumed feed force: rack C45, ind. hardened, helical, module 2, pinion 16 MnCr 5 , case hardened, 20 teeth, page $\mathrm{C}-45$ with $\mathrm{F}_{\text {utab }}=12 \mathrm{kN}$
$F_{u \text { zul./per. }}=\frac{F_{u \text { Tab }}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{K H \beta}} ; F_{u \text { zul./per. }}=\frac{11.5 \mathrm{kN}}{1.2 \cdot 1.2 \cdot 1.1 \cdot 1.2}$

$$
=5.9 \mathrm{kN}
$$

Condition

$\mathrm{F}_{\mathrm{uzul} \text {./per. }}>\mathrm{F}_{\mathrm{u}} ; 6.0 \mathrm{kN}>4.1 \mathrm{kN}$	$=>$ fulfilled	
Result:	Rack	2920105

Your Calculation

Values Given

O Lifting Operation
Mass to be Moved $m=$

Speed
v = \qquad m / s

Acceleration Time
$t_{b}=$ \qquad s

Acceleration Due to Gravity g = \qquad $\mathrm{m} / \mathrm{s}^{2}$

Load Factor
Life-Time Factor
Safety Coefficient
Linear Load
Distribution Factor
$\mathrm{K}_{\mathrm{A}}=$ \qquad
$\mathrm{f}_{\mathrm{n}}=$ \qquad
$\mathrm{S}_{\mathrm{B}}=$ \qquad
$\mathrm{L}_{\mathrm{KH} \beta}=$ \qquad

Calculation Process

Results

a	$=\frac{v}{t_{b}}$	$a=\ldots \quad \mathrm{m} / \mathrm{s}^{2}$	
F_{u}	$=\frac{m \cdot g+m \cdot a}{1000}$	$F_{u \text { erf./req. }}=\ldots$	

Permissible Feed Force $\mathrm{F}_{\mathrm{u} \text { tab }}$
$F_{\mathrm{u} \text { zul./per. }}=\frac{F_{u \text { Tab }}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{K H \beta}} ; F_{u \text { zul./per. }}=$ \qquad $=$ \qquad kN

Condition

$\mathrm{F}_{\mathrm{u} \text { zul./per. }}>\mathrm{F}_{\mathrm{u}} ; \quad \mathrm{kN}>\quad \mathrm{kN} \quad=>$ fulfilled

