

The values given in the load table are based upon uniform, smooth operation, K_{HB} =1.0 and reliable grease lubrication. Since, in practice, the applications are very diverse, it is important to consider the given conditions by using appropriate factors S_B , K_A , L_{KHB} and f_n (see below).

Formulas for Determining the Tangential Force

$$a = \frac{v}{t_b}$$
 [m/s²]

$$F_u = \frac{m \cdot g + m \cdot a}{1000}$$
 (for lifting axle) [kN]

$$F_u = \frac{m \cdot g \cdot \mu + m \cdot a}{1000}$$
 (for driving axle) [kN]

$$F_{u perm.} = \frac{F_{u Tab}}{K_A \cdot S_B \cdot f_B \cdot L_{guin}}$$
 [kN]

Formula dimensions see page ZD-3

The Condition $F_u < F_{u perm.}$ Must be Fulfilled.

Load Factor KA

Drive	Type of load from the machines to be driven		
	Uniform	Medium Shocks	Heavy Shocks
Uniform		1.25	1.75
Light Shocks	1.25	1.50	2.00
Medium Shocks	1.50	1.75	2.25

Safety Coefficient S_R

The safety coefficient should be allowed for according to experience ($S_B = 1.1$ to 1.4).

Life-Time Factor f_n

considering of the peripheral speed of the pinion and lubrication.

Linear Load Distribution Factor $L_{\rm KHB}$

The linear load distribution factor considers the contact stress, while it describes unintegrated load distribution over the tooth width ($L_{KHB} = \sqrt{K_{HB}}$).

 L_{KHB} = 1.1 for counter bearing, e.g. Torque Supporter

= 1.2 for preloaded bearings on the output shaft e.g. ATLANTA HT, HP and E servo-worm gear unit, BG bevel-gear unit

= 1.5 for unpreloaded bearings on the output shaft e.g. ATLANTA B servo-worm gear unit

Calculation Example

Values Given

Mass to be Moved m = 820 kg

Speed v = 2 m/s

Acceleration Time $t_b = 1 s$

Acceleration Due to Gravity $g = 9.81 \text{ m/s}^2$

Coefficient of Friction $\mu = 0.1$

Load Factor $K_A = 1.5$

Life-Time Factor $f_n = 1.05$ (cont. lubrication)

Safety Coefficient $S_B = 1.2$

Linear Load $L_{KHB} = 1.5$

Distribution Factor

Your Calculation

Values Given

⊗ Travelling Operation

Mass to be Moved m =_____ kg

Speed v = ____ m/s

Acceleration Time $t_b =$ _____s

Acceleration Due to Gravity g = 9.81 m/s²

Coefficient of Friction $\mu =$

Load Factor $K_{\Delta} =$

Life-Time Factor $f_n = \underline{\hspace{1cm}}$

Safety Coefficient $S_B =$

Linear Load $L_{KH\beta} =$

Distribution Factor

Calculation Process

Results

$$a = \frac{v}{t_b}$$
 $a = \frac{2}{1}$ = 2 m/s²

$$F_u = \underline{m \cdot g \cdot \mu + m \cdot a}$$

$$1000$$

$$F_u = 820 \cdot 9.81 \cdot 0.1 + 820 \cdot 2 = 2.44 \text{ kN}$$

Assumed feed force: rack C45, ind. hardened, straight tooth, module 3, pinion 16MnCr5, case hardened, 20 teeth, page C-46 with Futab = 11.5 kN

$$\begin{split} F_{u \, zul./per.} &= \frac{F_{uTab}}{K_A \cdot S_B \cdot f_n \cdot L_{KH\beta}} \,; \\ F_{u \, zul./per.} &= \, \frac{11.5 \, \text{kN}}{1.5 \cdot 1.2 \cdot 1.05 \cdot 1.5} = 4.05 \, \text{kN} \end{split}$$

Condition

$$F_{u \; zul./per.} \, > F_u \; ; \; \, 4.05 \; kN > 2.44 \; kN \qquad \qquad = > fulfilled \label{eq:fu}$$

Result: Rack 34 30 100 Page C-64

Pinion 24 35 220 Page C-40

Case-Hardened

Calculation Process

Results

$$a = \frac{V}{t_h}$$
 $a = ____ = m/s^2$

$$F_u = \frac{m \cdot g \cdot \mu + m \cdot a}{1000}$$
; $F_u = \frac{1000}{1000}$

Permissible Feed Force Fu Tab

$$F_{u \; zul./per.} = \; \frac{F_{u \; Tab}}{K_A \cdot S_B \cdot f_n \cdot L_{KH\beta}} \; ;$$

$$F_{u zul. /per.} =$$
 = ____ kN

Condition

$$F_{u,zul/per} > F_u$$
; $kN > \underline{\qquad} kN = > \text{ fulfilled}$

Calculation Example

Values Given

O Lifting Operation

m = 300 kgMass to be Moved

Speed v = 1.08 m/s

Acceleration Time $t_b = 0.27 \, s$

Acceleration Due to Gravity g = 9.81 m/s²

 $K_{\Delta} = 1.2$ Load Factor

 $f_n = 1.1$ (Cont. Lubrication) Life-Time Factor

 $S_B = 1.2$ Safety Coefficient

Linear Load $L_{KH\beta} = 1.2$

Distribution Factor

Calculation Process

Results

$$a = \frac{V}{t}$$

$$=\frac{v}{t_{b}}$$
 $a=\frac{1.08}{0.27}$

$$= 4 \text{ m/s}^2$$

$$F_u = \underline{m \cdot g + m \cdot a}$$

$$F_u = \underline{m \cdot g + m \cdot a}_{1000}$$
 $u = \underline{300 \cdot 9.81 + 300 \cdot 4}_{1000} = 4.1 \text{ kN}$

Assumed feed force: rack C45, ind. hardened, helical, module 2, pinion 16MnCr5, case hardened, 20 teeth, page C-45 with $F_{utab} = 12 \text{ kN}$

$$\mathsf{F}_{\text{u zul./per.}} = \frac{F_{u \, \text{Tab}}}{K_{A} \cdot S_{B} \cdot f_{n} \cdot L_{KH\beta}} \; ; \; \mathsf{F}_{\text{u zul./per.}} = \frac{11.5 \; \text{kN}}{1.2 \cdot 1.2 \cdot 1.1 \cdot 1.2} \\ = 5.9 \; \text{kN}$$

Condition

 $F_{u \text{ zul./per.}} > F_{u}$; 6.0 kN > 4.1 kN => fulfilled

Result: Rack 29 20 105 Page C-16

> Pinion 24 29 520 Page C-39

Your Calculation

Values Given

O Lifting Operation

m = kgMass to be Moved

Speed

Acceleration Time

Acceleration Due to Gravity g = 9.81 m/s²

Load Factor K_A =

f_n = _____ Life-Time Factor

S_B = _____ Safety Coefficient

L_{KHβ} = _____ Linear Load Distribution Factor

Calculation Process

Results

$$=\frac{v}{t}$$
 a $=$ _____

$$F_u = \underline{m \cdot g + m \cdot a}_{1000}$$
 $F_{u \text{ erf./req.}} = \underline{\qquad}_{1000}$ kN

Permissible Feed Force Futab

$$F_{\text{u zul./per.}} = \frac{F_{\text{u Tab}}}{K_A \cdot S_B \cdot f_n \cdot L_{KH\beta}} \quad ; F_{\text{u zul./per.}} = \underline{\qquad} = \underline{\qquad} \quad kN$$

Condition

 $F_{u \text{ zul./per.}} > F_{u}$; kN > kN=> fulfilled