

The values given in the load table are based on uniform, smooth servo-operation. Since, in practice, the applications are very diverse, it is essential to consider the given conditions by using the appropriate factors S, K_A and b_B (see symbols). The maximum oil-sump temperature of 80° C should not be exceeded.

[m/s²]

[Nm]

[rpm]

Formulas for Determining Power and Torque Data:

$$a = \frac{v}{t_b}$$

$$F_u = m \cdot g + m \cdot a$$
 (for lifting axle) [N]
 $F_u = m \cdot g \cdot \mu + m \cdot a$ (for driving axle) [N]

$$T_{2req.} = \frac{F_u \cdot d}{2000}$$

$$n_2 = \frac{v}{d \cdot \pi} \cdot 60000$$
 (rpm)

$$i_{gear} = \frac{n_1}{n_2}$$

$$T_{2perm.} = \frac{T_{2table}}{K_A \cdot S \cdot b_B}$$
[Nm]

Condition $T_{2perm.} > T_{2req.}$ must be fulfilled.

$$P_{1req.} = \frac{T_{2req.} \cdot n_2}{9550 \cdot \eta}$$
 [kW]

Load Factor K_A

Drive	Type of load from the machines to be driven uniform medium shocks heavy shocks				
uniform	1.00	1.25	1.75		
light shocks	1.25	1.50	2.00		
medium shocks	1.50	1.75	2.25		

Operating Time Factor b_B

Operating time	4–8 h	8–12 h	>12 h				
Operating time factor	1.00	1.20	1.35				

Safety Coefficient S

The Safety Coefficient should be allowed for according to experience (S = 1.1 to 1.4).

Symbols

а	=	Acceleration or Retardation	(m/s²)
b _B	=	Operating Time Factor	
ď	=	Pinion Pitch-Circle Diameter	(mm)
g	=	Acceleration Due to Gravity	(9.81m/s²)
т	=	Mass	(kg)
n_1	=	Gearbox Input rpm	(rpm)
n_2	=	Gearbox Output rpm	(rpm)
tb	=	Acceleration Time	(s)
i	=	Gear Ratios	()
ν	=	Travelling/Lifting Speed	(m/s)
Fu	=	Peripheral Force at the Pinion	(N)
K _A	=	Load Factor	()
P_1	=	Gearbox Input Power	(kW)
S	=	Safety Coefficient	()
T_2	=	Gearbox Output Torque	(Nm)
η	=	Gearbox Efficiency	()
μ	=	Coefficient of Friction	()
π	=	3.1459	

Calculating Example

Values Given

O Travelling	Operation	\otimes	Lif	ting Operation	
Mass to be Moved			=	300 kg	
Speed			=	1.08 m/s	
Acceleration Time			=	0.27 s	
Acceleration	Due to Gravity	g	=	9.81 m/s²	
Coefficient of	Friction	μ	=		
Pitch-Circle D	Dia. of Pinion	d	=	63.66 mm	
Load Factor		K_A	=	1.25	
Operation Tin	ne Factor	b _B	=	1.2	
Safety Coeffic	cient	S	=	1.2	
Motor rpm		n ₁	=	3000 rpm	
Motor Type					
Motor Manutacturer					

Calculation Process

Calculation Process					Results	
а	=	$\frac{v}{t_b}$	a =	1.08 0.27	= 4 m/s ²	
F _u	=	m•g+m•a	$F_u = 3$	00•9.81+300•4	= 4,143 N	
Fu	=	m•g•µ+m•a	only Tra	velling Operation		
T _{2erf.}	=	$\frac{F_u \cdot d}{2000}$	T _{2erf.} =	4143•63.66 2000	= 132 Nm	
n ₂	=	$d^{\frac{V}{\bullet}\pi}$ • 60,000	$n_2 = \frac{1}{6}$	$\frac{1.08}{3.66 \cdot \pi} \cdot 60000$	= 324 rpm	

$$i_{Getr.} = \frac{n_1}{n_2}$$
 $i_{Getr.} = \frac{3000}{325} \cong 9.25$

Permissible Gear Torque T_{2table} see page GB-13 assumed 58_5_09 with T₂=280 Nm at 3,000 rpm

$$T_{2zul.} = \frac{T_{2Table}}{K_A \cdot S \cdot b_B}$$
 $T_{2zul.} = \frac{280}{1.25 \cdot 1.2 \cdot 1.2} = 155 \text{ Nm}$

Condition

$$T_{2zul.} > T_{2erf} = 155 \text{ Nm} > 132 \text{ Nm} = \text{fulfilled}$$

$$P_{1erf} = \frac{T_{2erf} \cdot n_2}{9550 \cdot \eta} \qquad P_{1erf} = \frac{132 \cdot 324}{9550 \cdot 0.90} = 4.98 \text{ KW}$$

Your Calculation

Values Given

O Travelling Operation	on	0	Lift	ing Operation		
Mass to be Moved		m	=		kg	
Speed		v	=		m/s	
Acceleration Time		t _b	=		S	
Acceleration Due to G	iravity	g	=	9.81	m/s ²	2
Coefficient of Friction		μ	=		_	
Pitch-Circle Dia. of Pir	nion	d	=		mm	
Load Factor		K _A	=			
Operation Time Facto	r	b _B	=			
Safety Coefficient		S	=		_	
Motor rpm		n ₁	=		rpm	
Motor Type					_	
Motor Manutacturer						
Calculation Process					Resul	ts
$a = \frac{v}{t_b}$ a	a =				=	m/s²
$F_u = m \cdot g + m \cdot a$ F_u	- u =				=	Ν
$F_u = m \cdot g \cdot \mu + m \cdot a$ H	- u =				=	N
$T_{2erf.} = \frac{F_u \cdot d}{2000}$	T _{2erf.} =				=	Nm
$n_2 = \frac{v}{d \cdot \pi} \cdot 60000 \ r$	n ₂ =			• 60000	=	rpm
$i_{\text{Getr.}} = \frac{n_1}{n_2}$ i_1	Getr. =				≅	

Permissible Gear Torque T2table see page ...

$$T_{2zul.} = \frac{T_{2Table}}{K_A \cdot S \cdot b_B} \qquad T_{2zul.} = \underline{\qquad} = \underline{\qquad} \text{Nm}$$

Condition

$$T_{2zul.} > T_{2erf} = Nm > Nm = fulfilled$$

$$P_{1erf} = \frac{T_{2erf} \cdot n_2}{9550 \cdot \eta} \quad P_{1erf} = \underline{\qquad} KW$$

