

Linear Guideway

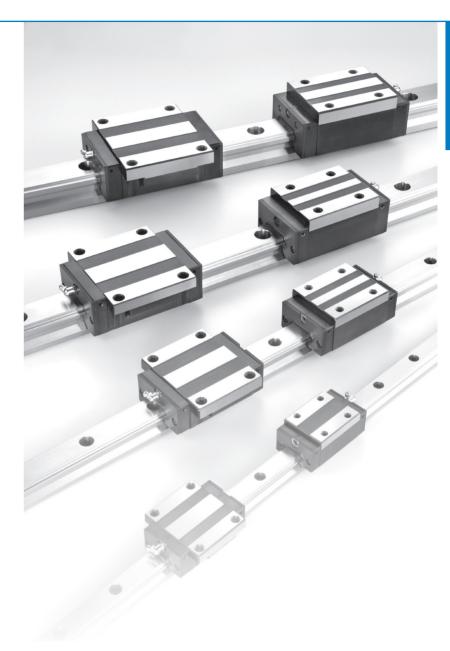
(1) High positioning accuracy, high repeatability

The *PMI* linear guideway is a design of rolling motion with a low friction coeffcient, and the difference between dynamic and static friction is very small. Therefore, the stick-slip will not occur when submicron feeding is making.

(2) Low frictional resistance, high precision maintained for long period

The frictional resistance of a linear guideway is only 1/20th to 1/40th of that in a slide guide. With a linear guideway, a well lubrication can be easily achieved by supplying grease through the grease nipple on carriage or utilizing a centralized oil pumping system, thus the frictional resistance is decreased and the accuracy could be maintained for longperiod.

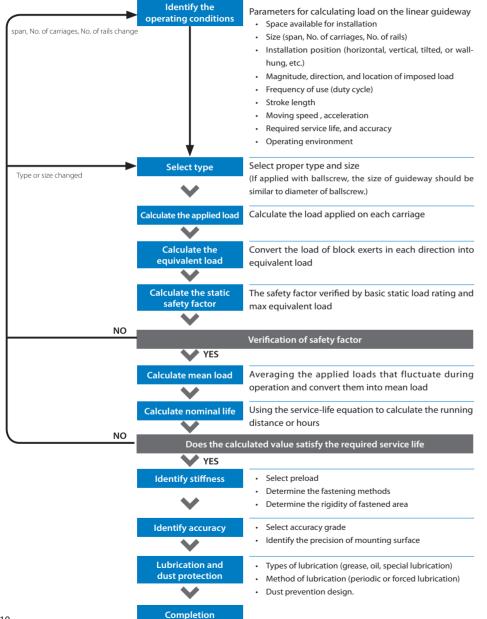
(3) High rigidity with four-way load design


The optimum design of geometric mechanics makes the linear guideway to bear the load in all four directions, radial, reversed radial, and two lateral directions. Furthermore, the rigidity of linear guideway could be easily achieved by preloading carriage and by adding the number of carriages.

(4) Suitable for high speed operation

Due to the characteristic of low frictional resistance, the required driving force is much lower than in other systems, thus the power consumption is small. Moreover, the temperature rising effect is small even under high speed operation.

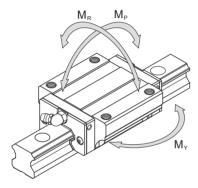
(5) Easy installation with interchangeability


Compared with the high-skill required scrapping process of conventional slide guide, the linear guideway can offer high precision even if the mounting surface is machined by milling or grinding. Moreover the interchangeability of linear guideway gives a convenience for installation and future maintenance.

Туре		Model	Characteristics	Major Application
	MSA-A MSA-LA			
Full Ball, Heavy Load Type	MSA-E MSA-LE		 Heavy Load, High Rigidity Self Alignment Capability Smooth Movement Low Noise Interchangeability 	Machine Center, NC lathe, XYZ axes of heavy
	MSA-S MSA-LS			cutting machine tools, Grinding head feeding axis of grinding machines, Milling machine, Z axis of boring machine and machine tools, EDM, Z axis of industrial machine, Measuring equipment, Precision XY table, Welding machine, Binding
Full Ball,	MSB-TE MSB-E		 Compact, High Load Self Alignment Capability Smooth Movement 	machine, Auto packing machine
Compact Type			Low Noise Interchangeability	
Full Ball,	MSC		 Ultra Compact Smooth Movement Low Noise	IC/LSI manufacturing machine, Hard disc drive, Slide unit of OA equipment, Wafer transfer
Miniature Type	MSD		Ball Retainer Interchangeability	equipment, Printed circuit board assembly table, Medical equipment, Inspection equipment

Туре		Model	Characteristics	Major Application
Full Roller, Heavy Load Type	MSR-E MSR-LE MSR-S MSR-LS		 Ultra Heavy Load Ultra High Rigidity Smooth Movement Low Noise Good lubricant Effect 	Machine Center, NC lathe, Grinding machine, Five axes milling machine, Jig borer, Drilling machine, Horizontal milling machine, Mold processing machine, EDM
Ball Chain, Heavy Load Type	SME-LE SME-S SME-LS		 Heavy Load, High Rigidity Self Alignment Capability Ball Chain Design Smooth Movement Low Noise, Good Lubricant Effect Interchangeability 	Machine Center, NC lathe, XYZ axes of heavy cutting machine tools, Grinding head feeding axis of grinding machines, milling machine, Z axis of boring machine and machine tools, EDM, Z axis of industrial machine, Measuring equipment, Precision XY table, Welding machine, Binding machine, Auto packing machine
Roller Chain, Heavy Load Type	SMR-E SMR-LE SMR-S SMR-LS		 Ultra Heavy Load Ultra High Rigidity Roller Chain Design Smooth Movement Low Noise Good Lubricant Effect 	Machine Center, NC lathe, Grinding machine, Five axes milling machine, Jig borer, Drilling machine, Horizontal milling machine, Mold processing machine, EDM
Full Ball Wide Rail type	MSG-E MSG-S		 Heavy Load, High Rigidity Self Alignment Capability Smooth Movement Low Noise Interchangeability 	Machine Center, Auto packing machine, Binding machine, laser cutting machine

The Procedure of Select Linear Guideway


To obtain a model which is most suitable for your service conditions of the linear guideway system, the load capacity and service life of the model must be taken into consideration. To verify the static load capacity, the basic static load rating (C_0) is taken to obtain the static safety factor. The service life can be obtained by calculating the nominal life based on basic dynamic load rating. As the raceways or rolling elements are subjected repeated stresses, the service life of a linear guideway is defined as the total running distance that the linear guideway travel until flaking occurs.

4.1 Basic Static Load Rating(C_0)

A localized permanent deformation will develop between raceways and rolling elements when a linear guideway receives an excessive load or a large impact. If the magnitude of the deformation exceeds a certain limit, it could obstruct the smooth motion of the linear quideway. The basic static load rating (C_0) refers to a static load in a given direction with a specific magnitude applied at the contact area under the most stress where the sum of permanent deformation develops between the raceway and rolling elements is 0.0001 times of the diameter of rolling ball. Therefore, the basic static load rating sets a limit on the static permissible load.

4.2 Static Permissible Moment(*M*₀**)**

When a moment is applied to a linear guideway, the rolling balls on both ends will receive the most stress among the stress distribution over the rolling elements in the system. The static permissible moment (Mo) refers to a static moment in a given direction with specific magnitude applied at the contact area under the most stress where the sum of permanent deformation develops between the raceway and rolling elements is 0.0001 times the diameter of rolling elements. Therefore, the static permissible moment sets a limit on the static moment. In linear guideway system, the static permissible moment is defined as MP, MY, MR three directions. See the figure below.

4.3 Static Safety Factor(*fs*)

Due to the impact and vibration while the guideway at rest or moving, or the inertia from start and stop, the linear guideway may encounter with an unexpected external force. Therefore, the safety factor should be taken into consideration for effects of such operating loads. The static safety factor (fs) is a ratio of the basic static load rating (C_0) to the calculated working load. The static safety factor for different kinds of application is shown as Table.

$$f_s = \frac{C_0}{P}$$
 or $f_s = \frac{M_0}{M}$

 f_s Static safety factor

 C_0 Basic static load rating (N)

 M_0 Static permissible moment $(N \cdot m)$

P Calculated working load (N)

M Calculated moment $(N \cdot m)$

Machine Type	Load Condition	fs (Lower limit)
Regular industrial	Normal loading condition	1.0 ~ 1.3
machine	With impact and vibration	2.0 ~ 3.0
Machine tool	Normal loading condition	1.0 ~ 1.5
Machine tool	With impact and vibration	2.5 ~ 7.0

Standard value of static safety factor

4.4 Basic Dynamic Load Rating (C)

Even when identical linear guideways in a group are manufactured in the same way or applied under the same condition, the service life may be varied. Thus, the service life is used as an indicator for determining the service life of a linear guideway system. The nominal life (L) is defined as the total running distance that 90% of identical linear guideways in a group, when they are applied under the same conditions, can work without developing flaking. The basic dynamic load rating (C) can be used to calculate the service life when linear guideway system response to a load. The basic dynamic load rating (C) is defined as a load in a given direction and with a given magnitude that when a group of linear guideways operate under the same conditions. As the rolling element is ball, the nominal life of the linear guideway is 50 km. Moreover, as the rolling element is roller, the nominal life is 100 km.

4.5 Calculation of Nominal Life (*L***)**

The nominal life of a linear guideway can be affected by the actual working load. The nominal life can be calculated base on selected basic dynamic load rating and actual working load. The nominal life of linear guideway system could be influenced widely by environmental factors such like hardness of raceway, environmental temperature, motion conditions, thus these factors should be considered for calculation of nominal life.

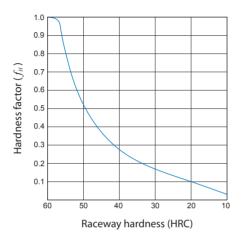
Ball
$$L = \left(\frac{f_H \times f_T}{f_W} \times \frac{C}{P}\right)^3 \times 50$$

Roller
$$L = \left(\frac{f_H \times f_T}{f_W} \times \frac{C}{P}\right)^{\frac{10}{3}} \times 100$$

L Nominal life (*km*)

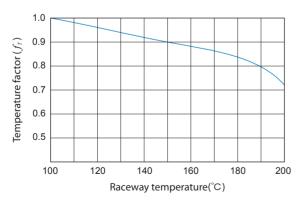
C Basic dynamic load rating (N)

P Working load (N)


 f_H Hardness factor

 f_T Temperature factor

 f_W Load factor


Hardness factor f_{μ}

In order to ensure the optimum load capacity of linear guideway system, the hardness of raceway must be HRC58~64. If the hardness is lower than this range, the permissible load and nominal life will be decreased. For this reason, the basic dynamic load rating and the basic static load rating should be multiplied by hardness factor for rating calculation. See figure below. The hardness requirement of *PMI* linear guideway is above HRC58, thus the f_{II} =1.0.

Temperature factor f_T

When operating temperature higher than 100°C, the nominal life will be degraded. Therefore, the basic dynamic and static load rating should be multiplied by temperature factor for rating calculation. See figure below. The assemble parts of *PMI* guideway are made of plastic and rubber, therefore, the operating temperature below 100°C is strongly recommend. For special need, please contact us.

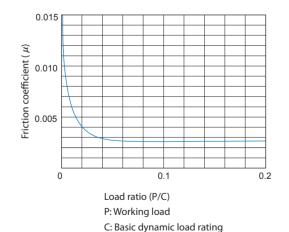
Load factor f_w

Although the working load of liner guideway system can be obtained by calculation, the actual load is mostly higher than calculated value. This is because the vibration and impact, caused by mechanical reciprocal motion, are difficult to be estimated. This is especially true when the vibration from high speed operation and the impact from repeated start and stop. Therefore, for consideration of speed and vibration, the basic dynamic load rating should be divided by the empirical load factor. See the table below.

Motion Condition	Operating Speed	f_W
No impact & vibration	V ≦ 15 <i>m/min</i>	1.0~1.2
Slight impact & vibration	15 < V ≦ 60 <i>m/min</i>	1.2~1.5
Moderate impact & vibration	60 < V ≦ 120 <i>m/min</i>	1.5~2.0
Strong impact & vibration	V≧ 120 <i>m/min</i>	2.0~3.5

4.6 Calculation of Service Life in Time (L_h)

When the nominal life (L) is obtained, the service life in hours can be calculated by using the following equation when stroke length and reciprocating cycles are constant.

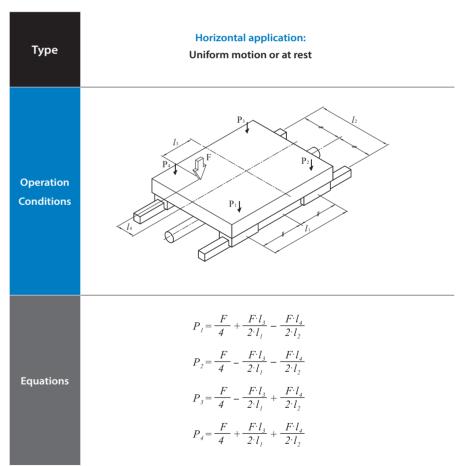

$$L_h = \frac{L \times 10^3}{2 \times l_S \times n_1 \times 60}$$

- L_h Service life in hours (hr)
- L Nominal life (km)
- l_S Stroke length (m)
- n_1 No. of reciprocating cycles per minute (min^{-1})

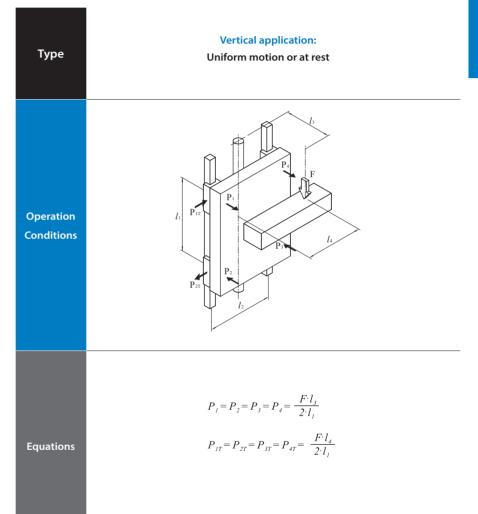
A linear guideway manipulates linear motion by rolling elements between the rail and the carriage. In which type of motion, the frictional resistance of linear guideway can be reduced to 1/20th to 1/40th of that in a slide guide. This is especially true in static friction which is much smaller than that in other systems. Moreover, the difference between static and dynamic friction is very little, so that the stick-slip situation does not occur. As such low friction, the submicron feeding can be carried out. The frictional resistance of a linear guideway system can be varied with the magnitude of load and preload, the viscosity resistance of lubricant, and other factors. The frictional resistance can be calculated by the following equation base on working load and seals resistance. Generally, the friction coefficient will be different from series to series, the friction coefficient of ball type is 0.002~0.003 (without considering the seal resistance) and the roller type is 0.001~0.002(without considering the seal resistance)

 $F = \mu \times P + f$

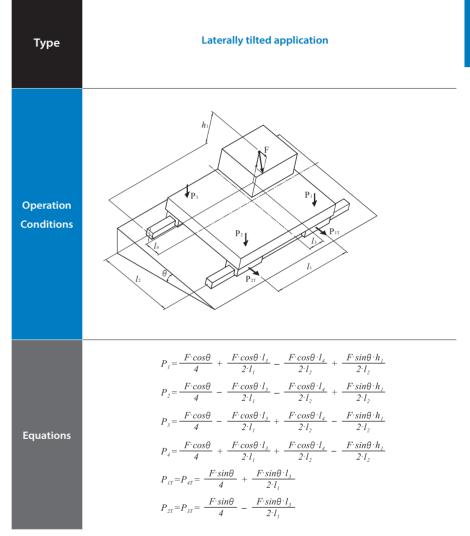
- Frictional resistance (kgf)
- μ Dynamic friction coefficient
- P Working load (kgf)
- f Seal resistance (kgf)

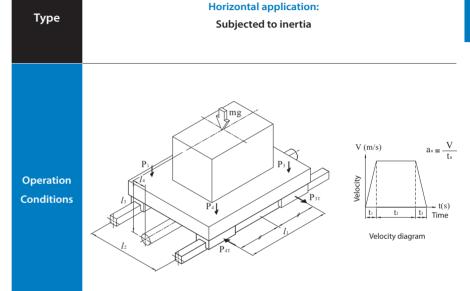


Relationship between working load and friction coefficient


The load applied to a linear guideway system could be varied with several factors such as the location of the center gravity of an object, the location of the thrust, and the inertial forces due to acceleration and deceleration during starting and stopping.

To select a correct linear guideway system, the above conditions must be considered for determining the magnitude of applied load.


Examples for calculating working load


Overhung horizontal application: Туре Uniform motion or at rest Operation Conditions $P_{I} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot l_{4}}{2 \cdot l_{2}}$ $P_2 = \frac{F}{4} - \frac{F \cdot l_3}{2 \cdot l_1} + \frac{F \cdot l_4}{2 \cdot l_2}$ **Equations** $P_{3} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot l_{4}}{2 \cdot l_{2}}$ $P_4 = \frac{F}{4} + \frac{F \cdot l_3}{2 \cdot l_1} - \frac{F \cdot l_4}{2 \cdot l_2}$

Wall installation application: Туре Uniform motion or at rest Operation **Conditions** $P_1 = P_2 = P_3 = P_4 = \frac{F \cdot l_4}{2 \cdot l_2}$ $P_{IT} = P_{4T} = \frac{F}{4} + \frac{F \cdot l_3}{2 \cdot l_1}$ **Equations** $P_{2T} = P_{3T} = \frac{F}{4} - \frac{F \cdot l_3}{2 \cdot l_1}$

Longitudinally tilted application Type Operation **Conditions** $P_{l} = \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot cos\theta \cdot l_{4}}{2 \cdot l_{2}} + \frac{F \cdot sin\theta \cdot h_{1}}{2 \cdot l_{1}}$ $P_2 = \frac{F \cdot \cos\theta}{4} - \frac{F \cdot \cos\theta \cdot l_3}{2 \cdot l_1} - \frac{F \cdot \cos\theta \cdot l_4}{2 \cdot l_2} - \frac{F \cdot \sin\theta \cdot h_1}{2 \cdot l_1}$ $P_{3} = \frac{F \cdot \cos\theta}{4} - \frac{F \cdot \cos\theta \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot \cos\theta \cdot l_{4}}{2 \cdot l_{2}} - \frac{F \cdot \sin\theta \cdot h_{1}}{2 \cdot l_{1}}$ **Equations** $P_4 = \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_3}{2 \cdot l_1} + \frac{F \cdot cos\theta \cdot l_4}{2 \cdot l_2} + \frac{F \cdot sin\theta \cdot h_1}{2 \cdot l_1}$ $P_{IT} = P_{4T} = + \frac{F \cdot \sin\theta \cdot l_4}{2 \cdot l_I}$ $P_{2T} = P_{3T} = -\frac{F \cdot \sin\theta \cdot l_4}{2 \cdot l_1}$

Equations

During acceleration

$$P_{I} = P_{4} = \frac{mg}{4} - \frac{m a_{I} \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_{I} = \frac{mg}{4} - \frac{m a_{I} \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_2 = P_3 = \frac{mg}{4} + \frac{m \cdot a_1 \cdot l_3}{2 \cdot l_1}$$
 $P_2 = P_3 = \frac{mg}{4} - \frac{m \cdot a_3 \cdot l_3}{2 \cdot l_1}$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_1 \cdot l_4}{2 \cdot l_1}$$

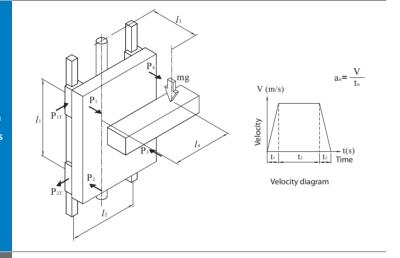
In uniform motion
$$P_1 = P_2 = P_3 = P_4 = \frac{mg}{4}$$

During deceleration

$$P_1 = P_4 = \frac{mg}{4} - \frac{mra_1 \cdot l_3}{2 \cdot l_1}$$
 $P_1 = P_4 = \frac{mg}{4} + \frac{mra_3 \cdot l_3}{2 \cdot l_1}$

$$P_2 = P_3 = \frac{mg}{4} - \frac{m \cdot a_3 \cdot l_3}{2 \cdot l_1}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_1 \cdot l_4}{2 \cdot l_1} \qquad P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_3 \cdot l_4}{2 \cdot l_1}$$


Calculation of the Equivalent Load

Type

Vertical application:

Subjected to inertia

Operation **Conditions**

$$P_1 = P_2 = P_3 = P_4 = \frac{m \cdot (g + a_1) \cdot l_3}{2 \cdot l_1}$$
 $P_1 = P_2 = P_3 = P_4 = \frac{m \cdot (g - a_3) \cdot l_3}{2 \cdot l_1}$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot (g + a_I) \cdot l}{2 \cdot l_I}$$

During acceleration

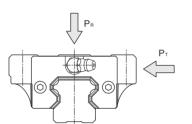
$$P_1 = P_2 = P_3 = P_4 = \frac{m \cdot (g - a_3) \cdot l}{2 \cdot l_1}$$

During deceleration

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{mr(g + a_1) \cdot l_4}{2 \cdot l_1} \qquad P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{mr(g - a_3) \cdot l_4}{2 \cdot l_1}$$

Equations

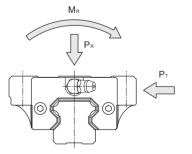
In uniform motion


$$P_{1} = P_{2} = P_{3} = P_{4} = \frac{m \cdot g \cdot l_{3}}{2 \cdot l_{1}}$$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot g \cdot l_4}{2 \cdot l_1}$$

The linear guideway system can take up loads and moments in all four directions those are radial load, reverse-radial load, and lateral load simultaneously. When more than one load is exerted on linear guideway system simultaneously, all loads could be converted into radial or lateral equivalent load for calculating service life and static safety factor. PMI linear guideway has four-way equal load design. The calculation of equivalent load for the use of two or more linear guideways is shown as below.

$$oldsymbol{P_E} = ig|oldsymbol{P_R}ig| + ig|oldsymbol{P_T}ig|$$


- P_E Equivalent load (N)
- P_R Radial or reverse-radial load (N)
- P_{T} Lateral load (N)

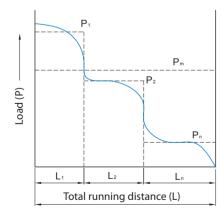
For the case of mono rail, the moment effect should be considered. The equation is:

$$P_{E} = \left|P_{R}\right| + \left|P_{T}\right| + C_{0} \cdot \frac{\left|M\right|}{M_{R}}$$

- P_E Equivalent load (N)
- Radial or reverse-radial load (N)
- P_T Lateral load (N)
- Basic static load rating (N)
- Calculated moment $(N \cdot m)$
- M_R Permissible static moment $(N \cdot m)$

When a linear guideway system receives varying loads, the service life could be calculated in consideration of varying loads of the host-system operation conditions. The mean load (Pm) is the load that the service life is equivalent to the system which under the varying load conditions. The equation of mean load is:

 $P_m = \sqrt[e]{rac{1}{L} \cdot \sum_{n=1}^n (P_n^e \cdot L_n)}$

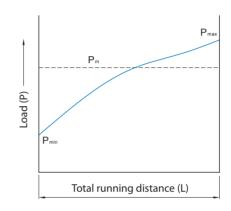

- P_m Mean load (N)
- P_n Varying load (N)
- *L* Total running distance (*mm*)
- L_n Running distance under load P_n (mm)
- e Exponent (Ball type:3, Roller type:10/3)

Examples for calculating mean load

Types of Varying Load

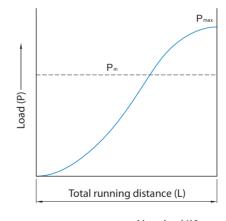
Calculation of Mean Load

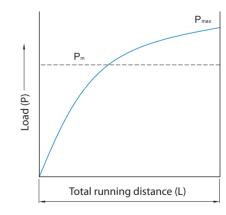
Loads that change stepwise


$$P_{m} = e \sqrt{\frac{1}{L} \left(P_{1}^{e} \cdot L_{1} + P_{2}^{e} \cdot L_{2} \cdot \dots + P_{n}^{e} \cdot L_{n} \right)}$$

- P_m Mean load (N)
- P_n Varying load (N)
- *L* Total running distance (*mm*)
- L_n Running distance under load P_n (mm)

Calculation of Mean Load


Loads that change monotonously

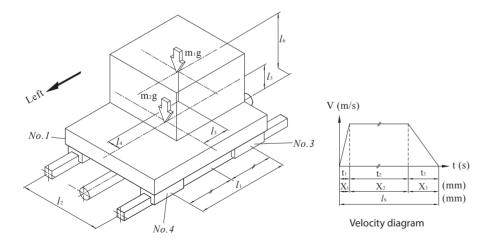

$$P_{m}\congrac{1}{3}ig(P_{min}+2\cdot P_{max}ig)$$

- P_m Mean load (N)
- P_{min} Minimum load (N)
- P_{max} Maximum load (N)

Loads that change sinusoidally

$$P_m \cong 0.75 \cdot P_{max}$$

Mean load (N)
Maximum load (N)


Operation conditions

Modle MSA35LA2SSFC + R2520-20/20 P II

Basic dynamic load rating : C = 63.6 kN

Basic static load rating : $C_0 = 100.6 \text{ kN}$

Mass	$m_1 = 700 \text{ kg}$ $m_2 = 450 \text{ kg}$	Stroke	$I_s = 1500 \text{ mm}$
Velocity	V = 0.75 m/s	Distance	$I_1 = 650 \text{ mm}$ $I_2 = 450 \text{ mm}$ $I_3 = 135 \text{ mm}$
Time	$t_1 = 0.05 \text{ s}$ $t_2 = 1.9 \text{ s}$ $t_3 = 0.15 \text{ s}$		$l_4 = 60 \text{ mm}$ $l_5 = 175 \text{ mm}$ $l_6 = 400 \text{ mm}$
Acceleration	$a_1 = 15 \text{ m/s}^2$ $a_3 = 5 \text{ m/s}^2$		

9.1 Calculate the load that each carriage exerts

9.1.1 Uniform motion, Radial load P_n

$$P_{1} = \frac{m_{1}g}{4} - \frac{m_{1}g \cdot l_{3}}{2l_{1}} + \frac{m_{1}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$

$$= 2562.4 \text{ N}$$

$$P_{2} = \frac{m_{1}g}{4} + \frac{m_{1}g \cdot l_{3}}{2l_{1}} + \frac{m_{1}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$

$$= 3987.2 \text{ N}$$

$$P_{3} = \frac{m_{1}g}{4} + \frac{m_{1}g \cdot l_{3}}{2l_{1}} - \frac{m_{1}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$

$$= 3072.6 \text{ N}$$

$$P_{4} = \frac{m_{1}g}{4} - \frac{m_{1}g \cdot l_{3}}{2l_{1}} - \frac{m_{1}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$

$$= 1647.8 \text{ N}$$

9.1.2 During acceleration to the left, Radial load $P_n la_1$

$$P_{l}la_{l} = P_{l} - \frac{m_{l} \cdot a_{l} \cdot l_{6}}{2l_{l}} - \frac{m_{2} \cdot a_{l} \cdot l_{5}}{2l_{l}}$$

$$= -1577 \text{ N}$$

$$P_{2}la_{l} = P_{2} + \frac{m_{l} \cdot a_{l} \cdot l_{6}}{2l_{l}} + \frac{m_{2} \cdot a_{l} \cdot l_{5}}{2l_{l}}$$

$$= 8126.6 \text{ N}$$

$$P_{3}la_{l} = P_{3} + \frac{m_{l} \cdot a_{l} \cdot l_{6}}{2l_{l}} + \frac{m_{2} \cdot a_{l} \cdot l_{5}}{2l_{l}}$$

$$= 7212 \text{ N}$$

$$P_{4}la_{l} = P_{4} - \frac{m_{1} \cdot a_{l} \cdot l_{6}}{2l_{l}} - \frac{m_{2} \cdot a_{l} \cdot l_{5}}{2l_{l}}$$

$$= -2491.6 \text{ N}$$

Lateral load $Pt_n la_1$

$$Pt_1 la_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -484.6 \text{ N}$$
 $Pt_3 la_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 484.6 \text{ N}$ $Pt_2 la_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 484.6 \text{ N}$ $Pt_4 la_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -484.6 \text{ N}$

9.1.3 During deceleration to the left, Radial load $P_n la_3$

$$\begin{split} P_1 l a_3 &= P_1 + \frac{m_1 \cdot a_3 \cdot l_6}{2 l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2 l_1} \\ &= 3942.2 \text{ N} \end{split}$$

$$= 1692.8 \text{ N}$$

$$P_2 l a_3 &= P_2 - \frac{m_1 \cdot a_3 \cdot l_6}{2 l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2 l_1} \\ &= 2607.4 \text{ N} \end{split}$$

$$= 3027.6 \text{ N}$$

Lateral load Pt,la

$$Pt_1 la_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 161.5 \text{ N}$$
 $Pt_3 la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 161.5 \text{ N}$ $Pt_2 la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -161.5 \text{ N}$ $Pt_4 la_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -161.5 \text{ N}$

9.1.4 During acceleration to the right, Radial load $P_n ra_1$

$$P_{1}ra_{1} = P_{1} + \frac{m_{1} \cdot a_{1} \cdot l_{6}}{2l_{1}} + \frac{m_{2} \cdot a_{1} \cdot l_{5}}{2l_{1}}$$

$$= 6701.8 \text{ N}$$

$$P_{2}ra_{1} = P_{2} - \frac{m_{1} \cdot a_{1} \cdot l_{6}}{2l_{1}} - \frac{m_{2} \cdot a_{1} \cdot l_{5}}{2l_{1}}$$

$$= -152.2 \text{ N}$$

$$P_{3}ra_{1} = P_{3} - \frac{m_{1} \cdot a_{1} \cdot l_{6}}{2l_{1}} - \frac{m_{2} \cdot a_{1} \cdot l_{5}}{2l_{1}}$$

$$= -1066.8 \text{ N}$$

$$P_{4}ra_{1} = P_{4} + \frac{m_{1} \cdot a_{1} \cdot l_{6}}{2l_{1}} + \frac{m_{2} \cdot a_{1} \cdot l_{5}}{2l_{1}}$$

$$= 5787.2 \text{ N}$$

Lateral load Pt_nla₃

$$Pt_1 ra_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 484.6 \text{ N}$$
 $Pt_3 ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -484.6 \text{ N}$ $Pt_2 ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -484.6 \text{ N}$ $Pt_4 ra_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 484.6 \text{ N}$

9.1.5 During deceleration to the right, Radial load $P_n ra_3$

$$\begin{split} P_{1}ra_{3} &= P_{1} - \frac{m_{1} \cdot a_{3} \cdot l_{6}}{2l_{1}} - \frac{m_{2} \cdot a_{3} \cdot l_{5}}{2l_{1}} \\ &= 1182.6 \text{ N} \\ \\ P_{2}ra_{3} &= P_{2} + \frac{m_{1} \cdot a_{3} \cdot l_{6}}{2l_{1}} + \frac{m_{2} \cdot a_{3} \cdot l_{5}}{2l_{1}} \\ &= 5367 \text{ N} \end{split}$$

$$= P_{3}ra_{3} = P_{3} + \frac{m_{1} \cdot a_{3} \cdot l_{6}}{2l_{1}} + \frac{m_{2} \cdot a_{3} \cdot l_{5}}{2l_{1}} \\ &= 4452.4 \text{ N}$$

$$P_{4}ra_{3} = P_{4} - \frac{m_{1} \cdot a_{3} \cdot l_{6}}{2l_{1}} - \frac{m_{2} \cdot a_{3} \cdot l_{5}}{2l_{1}} \\ &= 268 \text{ N} \end{split}$$

Lateral load Pt,ra,

$$Pt_1ra_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -161.5 \text{ N}$$
 $Pt_3ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 161.5 \text{ N}$ $Pt_2ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 161.5 \text{ N}$ $Pt_4ra_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -161.5 \text{ N}$

9.2 Calculate equivalent load

9.2.1 In uniform motion

$$P_{E1} = P_1 = 2562.4 \text{ N}$$
 $P_{E3} = P_3 = 3072.6 \text{ N}$

$$P_{E2} = P_2 = 3987.2 \text{ N}$$
 $P_{E4} = P_4 = 1647.8 \text{ N}$

9.2.2 During acceleration to the left

$$P_{E_1}la_1 = |P_1la_1| + |Pt_1la_1| = 2061.6 \text{ N}$$
 $P_{E_3}la_1 = |P_3la_1| + |Pt_3la_1| = 7696.6 \text{ N}$

$$P_{E2}la_1 = |P_2la_1| + |Pt_2la_1| = 8611.2 \text{ N}$$
 $P_{E4}la_1 = |P_4la_1| + |Pt_4la_1| = 2976.2 \text{ N}$

9.2.3 During deceleration to the left

$$P_{E_1}la_3 = |P_1la_3| + |Pt_1la_3| = 4103.7 \text{ N}$$
 $P_{E_3}la_3 = |P_3la_3| + |Pt_3la_3| = 1854.3 \text{ N}$

$$P_{E2}la_3 = |P_2la_3| + |Pt_2la_3| = 2768.9 \text{ N}$$
 $P_{E4}la_3 = |P_4la_3| + |Pt_4la_3| = 3189.1 \text{ N}$

9.2.4 During acceleration to the right

$$P_{E1}ra_1 = |P_1la_1| + |Pt_1la_1| = 7186.4 \text{ N}$$
 $P_{E3}ra_1 = |P_3la_1| + |Pt_3la_1| = 1551.4 \text{ N}$

$$P_{E2}ra_1 = |P_2la_1| + |Pt_2la_1| = 636.8 \text{ N}$$
 $P_{E4}ra_1 = |P_4la_1| + |Pt_4la_1| = 6271.8 \text{ N}$

9.2.5 During deceleration to the right

$$P_{E_1}ra_3 = |P_1la_3| + |Pt_1la_3| = 1344.1 \text{ N}$$
 $P_{E_3}ra_3 = |P_3la_3| + |Pt_3la_3| = 4613.9 \text{ N}$

$$P_{E2}ra_3 = |P_2la_3| + |Pt_2la_3| = 5528.5 \text{ N}$$
 $P_{E4}ra_3 = |P_4la_3| + |Pt_4la_3| = 429.5 \text{ N}$

9.3 Calculation of static factor

From above, the maximum load is exerted on carriage No.2 when during acceleration of the 2nd linear guideway to the left.

$$fs = \frac{C_O}{P_{E2}la_1} = \frac{100.6 \times 10^3}{8611.2} = 11.7$$

9.4 Calculate the mean load on each carriage Pm_n

$$P_{m1} = \sqrt[3]{\frac{\left(P_{E1}la_1^3 \cdot X_1 + P_{E1}^3 \cdot X_2 + P_{E1}la_3^3 \cdot X_3 + P_{E1}ra_1^3 \cdot X_1 + P_{E1}^3 \cdot X_2 + P_{E1}ra_3^3 \cdot X_3\right)}{2l_S} = 2700.7 \text{ N}$$

$$P_{m2} = \sqrt[3]{\frac{\left(P_{E2}la_1^3 \cdot X_1 + P_{E2}^3 \cdot X_2 + P_{E2}la_3^3 \cdot X_3 + P_{E2}ra_1^3 \cdot X_1 + P_{E2}^3 \cdot X_2 + P_{E2}ra_3^3 \cdot X_3\right)}{2l_S}} = 4077.2 \text{ N}$$

$$P_{m3} = \sqrt[3]{\frac{(P_{E3}la_1^3 \cdot X_1 + P_{E3}^3 \cdot X_2 + P_{E3}la_3^3 \cdot X_3 + P_{E3}ra_1^3 \cdot X_1 + P_{E3}^3 \cdot X_2 + P_{E3}ra_3^3 \cdot X_3)}{2l_S}} = 3187.7 \text{ N}$$

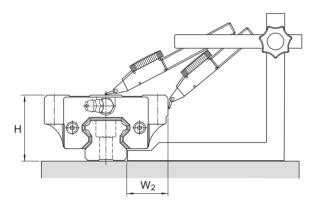
$$P_{m4} = \sqrt[3]{\frac{\left(P_{E4}la_1^3 \cdot X_1 + P_{E4}^3 \cdot X_2 + P_{E4}la_3^3 \cdot X_3 + P_{E4}ra_1^3 \cdot X_1 + P_{E4}^3 \cdot X_2 + P_{E4}ra_3^3 \cdot X_3\right)}{2l_S}} = 1872.6 \text{ N}$$

9.5 Calculation of nominal life (L_n)

Base on the equation of the nominal life, we assume the f_W = 1.5 and the result is as below:

$$L_1 = \left(\frac{C}{f_W \cdot P_{m1}}\right)^3 \times 50 = 193500 \text{ km}$$
 $L_3 = \left(\frac{C}{f_W \cdot P_{m3}}\right)^3 \times 50 = 117700 \text{ km}$

$$L_2 = \left(\frac{C}{f_W \cdot P_{m2}}\right)^3 \times 50 = 56231 \text{ km}$$


$$L_4 = \left(\frac{C}{f_W \cdot P_{m4}}\right)^3 \times 50 = 580400 \text{ km}$$

From these calculations and under the operating conditions specified as above, the 56231 km running distance as service life of carriage No.2 is obtained.

The accuracy of linear guideway includes the dimensional tolerance of height, width, and the running accuracy of the carriage on the rail. The standard of the dimension difference is built for two or more carriages on a rail or a number of rails are used on the same plane. The accuracy of linear guideway is divided into 5 classes, normal grade (N), high precision (H), precision (P), super precision (SP), and ultra precision (UP).

Running parallelism

The running accuracy is the deviation of parallelism between the reference surface of carriage and reference surface of rail when carriage moving over the entire length of rail.

Height difference (ΔH)

The height difference (ΔH) means the height difference among carriages installed on the same plane.

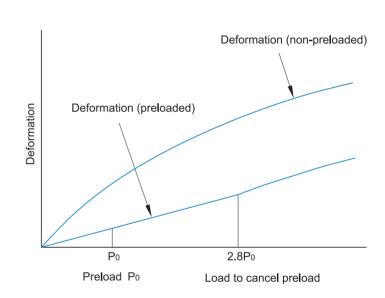
Width difference (ΔW₂)

The width difference (ΔW_2) means the width difference among carriages installed on a rail.

Additional remarks:

- 1. When two or more linear guideways are used on the same plane, the tolerance of W_2 and difference of ΔW_2 is applicable to master rail only.
- 2. The accuracy is measured at the center or central area of carriage.

10.1 The Selection of Accuracy Grade


The accuracy grade for different applications shown as table below.

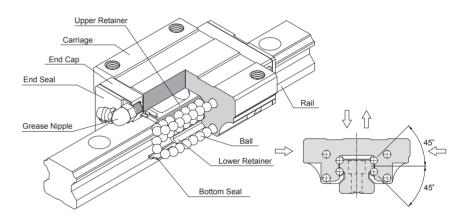
Court	Sort Application		Accuracy Grade				
Sort	Application	N	Н	Р	SP	UP	
	Machining center			•	•		
	Lathe			•	•		
	Milling machine			•	•		
	Boring machine			•	•		
	Jig borer				•	•	
	Grinding machine				•	•	
Machine Tool	Electric discharge machine			•	•	•	
lachin	Punching press		•	•			
2	Laser-beam machine		•	•	•		
	Woodworking machine	•	•	•			
	NC drilling machine		•	•			
	Tapping center		•	•			
	Pallet changer	•					
	ATC	•					
	Wire cutter			•	•		
	Dresser				•	•	

11

Calculation of the Equivalent Load

The rigidity of a linear guideway could be enhanced by increasing the preload. As shown as below figure, the load could be raised up to 2.8 times the preload applied. The preload is represented by negative clearance resulting from the increase of rolling element diameter. Therefore, the preload should be considered in calculation service life.

. .			Ac	curacy Gr	P SP O O O O O O O O O O O O O O O O O O O		
Sort	Application	N	Н	Р	SP	UP	
Industrial Robot	Cartesian coordinate robot	•	•	•			
Indu Rol	Cylindrical coordinate robot	•	•				
	Wire bonder			•	•		
	Prober				•	•	
Semiconductor Manufacturing	Electronic- component inserter		•	•			
Ser	Printed-circuit- board drilling machine		•	•	•		
	Injection-molding machine	•	•				
	3D measuring instrument				•	•	
	Office equipment	•	•				
Ž.	Transfer equipment	•	•				
Others	XY table		•	•	•		
	Painting machine	•	•				
	Welding machine	•	•				
	Medical equipment	•	•				
	Digitizer		•	•	•		
	Inspection equipment			•	•	•	


11.1 The Selection of Preload

Selecting proper preload from table below to adapt the specific application and condition.

Preload grade	Fitted condition	Application examples			
Clearance (FZ)	 The loading direction is fixed, vibration and impact are light, and two axes are applied in parallel. High precision is not required, and the low frictional resistance is need. 	Semiconductor facilities, medical equipment, stage systems, press machine, welding machine, industrial robot, and other small sliding systems.			
Light preload (FC)	 The loading direction is fixed, vibration and impact are light, and two axes are applied in parallel. High precision is not required, and the low frictional resistance is needed. 	Welding machine, binding machine, auto packing machine, XY axis of ordinary industrial machine, material handling equipments.			
Medium preload (F0)	 Overhang application with a moment load. Applied in one-axis configuration The need of light preload and high precision. 	Z axis of industrial machines, EDM, precision XY table, PC board drilling machine, industrial robot, NC lathe, measuring equipment, grinding machine, auto painting machine.			
Heavy preload (F1)	 Machine is subjected to vibration and impact, and high rigidity required. Application of heavy load or heavy cutting. 	Machine center, NC lathe, grinding machine, milling machine, Z axis of boring machine and machine tools.			
Ultra heavy preload (F2)	 Machine is subjected to vibration and impact, and high rigidity required. Application of heavy load or heavy cutting. 	Machine center, NC lathe, grinding machine, milling machine, Z axis of boring machine and machine tools.			

12.1 Heavy Load Type, MSA Series

A. Construction

B. Characteristics

The trains of balls are designed to a contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSA series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.

The patent design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

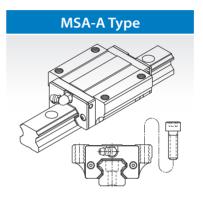
High Rigidity, Four-way Equal Load

The four trains of balls are allocated to a circular contact angle at 45°, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

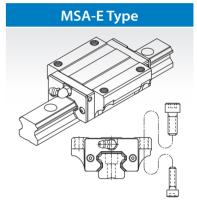
Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

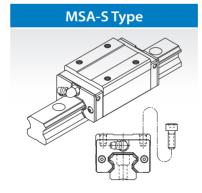
Self Alignment Capability


The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

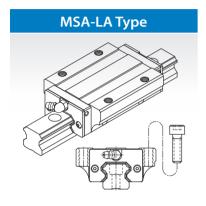
Interchangeability


For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

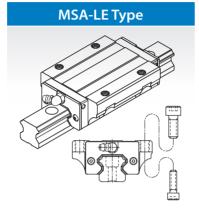
C. Carriage Type


Heavy Load

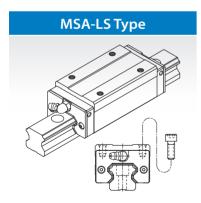
Installed from top side of carriage with the thread length longer than MSA-E type.



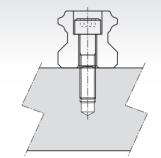
This type offers the installation either from top or bottom side of carriage.

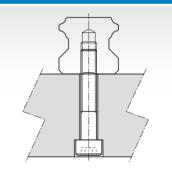


Square type with smaller width and can be installed from top side of carriage.

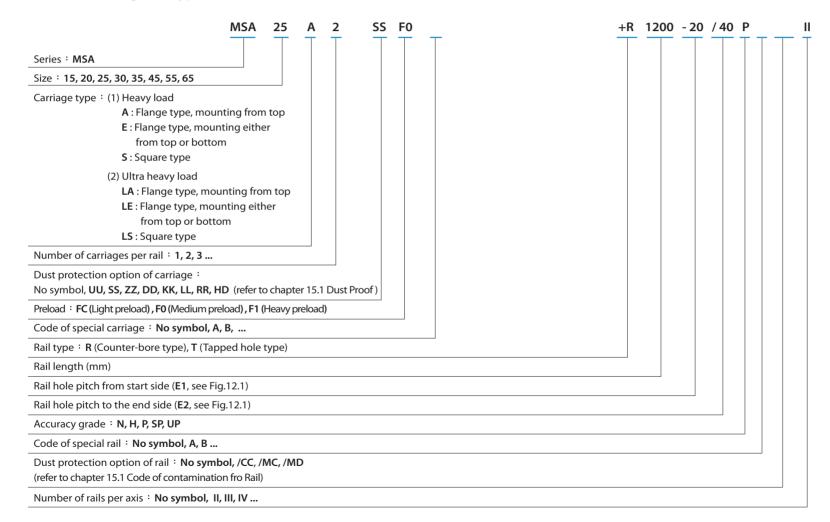

Ultra Heavy Load

All dimensions are same as MSA-A except the length is longer, which makes it more rigid.

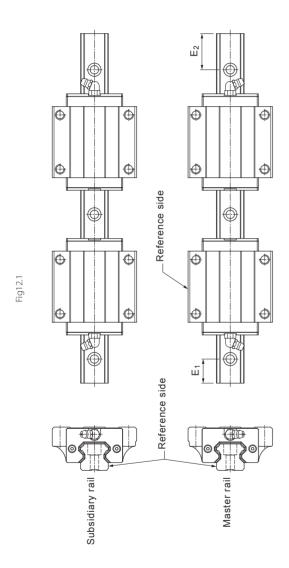

All dimensions are same as MSA-E except the length is longer, which makes it more rigid.


All dimensions are same as MSA-S except the length is longer, which makes it more rigid.

D. Rail Type

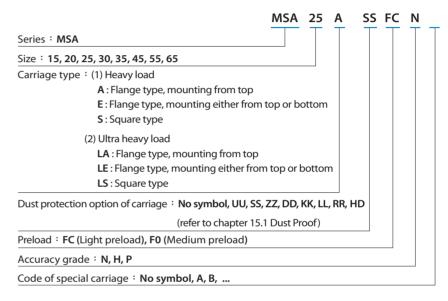


Tapped Hole (T type)

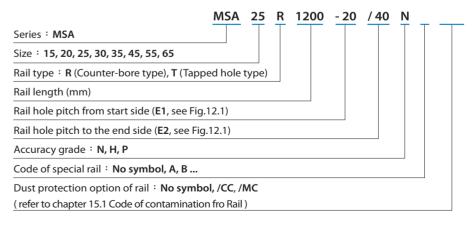


E. Description of Specification

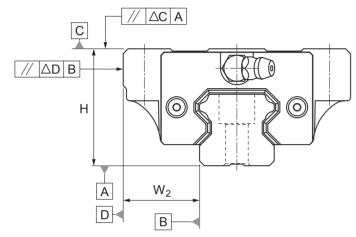
(1) Non-Interchangeable Type



 $\times PMI$



(2) Interchangeable Type


Code of Carriage

Code of Rail

F. Accuracy Grade

Table 1 Running Parallelism

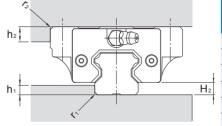
Rail leng	gth (mm)	Running Parallelism Values(μm)				
Above	Or less	N	Н	Р	SP	UP
0	315	9	6	3	2	1.5
315	400	11	8	4	2	1.5
400	500	13	9	5	2	1.5
500	630	16	11	6	2.5	1.5
630	800	18	12	7	3	2
800	1000	20	14	8	4	2
1000	1250	22	16	10	5	2.5
1250	1600	25	18	11	6	3
1600	2000	28	20	13	7	3.5
2000	2500	30	22	15	8	4
2500	3000	32	24	16	9	4.5
3000	3500	33	25	17	11	5
3500	4000	34	26	18	12	6

A Non-Interchangeable Type

		Accuracy Grade				
Model No.	ltem	Normal N	High H	Precision P	Super Precision SP	Ulitra Precision UP
	Tolerance for height H	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008
	Height difference ΔH	0.02	0.01	0.006	0.004	0.003
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006	0.004	0.003
	Running parallelism of surface C with surface A		ΔC	(see the tabl	le 1)	
	Running parallelism of surface D with surface B		ΔD	(see the tab	le 1)	
	Tolerance for height H	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01
	Height difference ΔH	0.02	0.015	0.007	0.005	0.003
25	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01
30	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007	0.005	0.003
35	Running parallelism of surface C with surface A	ΔC (see the table 1)				
	Running parallelism of surface D with surface B		ΔD	(see the tab	le 1)	
	Tolerance for height H	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02
	Height difference ΔH	0.03	0.015	0.007	0.005	0.003
45	Tolerance for distance W ₂	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02
55	Difference in distance $W_2(\Delta W_2)$	0.03	0.02	0.01	0.007	0.005
	Running parallelism of surface C with surface A		ΔC	(see the tabl	le 1)	
	Running parallelism of surface D with surface B		ΔD	(see the tab	le 1)	
	Tolerance for height H	±0.1	±0.07	0 -0.07	0 -0.05	0 -0.03
	Height difference ΔH	0.03	0.02	0.01	0.007	0.005
65	Tolerance for distance W ₂	±0.1	±0.07	0 -0.07	0 -0.05	0 -0.03
65	Difference in distance $W_2(\Delta W_2)$	0.03	0.025	0.015	0.01	0.007
	Running parallelism of surface C with surface A	h ΔC (see the table 1)				
	Running parallelism of surface D with surface B		ΔD	(see the tab	le 1)	

B Interchangeable Type

Madal			Accuracy Grade			
Model No.	ltem	Normal N	High H	Precision P		
	Tolerance for height H	±0.1	±0.03	0 -0.03		
	Height difference ΔH	0.02	0.01	0.006		
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03		
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006		
	Running parallelism of surface C with surface A		ΔC (see the table 1)			
	Running parallelism of surface D with surface B	ith ΔD (see the table 1)				
	Tolerance for height H	±0.1	±0.04	0 -0.04		
	Height difference ΔH	0.02	0.015	0.007		
25	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04		
30	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007		
35	Running parallelism of surface C with surface A	ΔC (see the table 1)				
	Running parallelism of surface D with surface B	ΔD (see the table 1)				
	Tolerance for height H	±0.1	±0.05	0 -0.05		
	Height difference ΔH	0.03	0.015	0.007		
45	Tolerance for distance W ₂	±0.1	±0.05	0 -0.05		
55	Difference in distance $W_2(\Delta W_2)$	0.03	0.02	0.01		
	Running parallelism of surface C with surface A		ΔC (see the table 1)			
	Running parallelism of surface D with surface B		ΔD (see the table 1)			
	Tolerance for height H	±0.1	±0.07	0 -0.07		
	Height difference ΔH	0.03	0.02	0.01		
65	Tolerance for distance W ₂	±0.1	±0.07	0 -0.07		
65	Difference in distance $W_2(\Delta W_2)$	0.03	0.025	0.015		
	Running parallelism of surface C with surface A		ΔC (see the table 1)			
	Running parallelism of surface D with surface B		ΔD (see the table 1)			


G. Preload Grade

Cartes	Preload grade					
Series	Light preload (FC)	Heavy preload (F1)				
MSA15			-			
MSA20						
MSA25						
MSA30	0~0.02C	0.03~0.05C	0.05~0.08C			
MSA35	0~0.02C					
MSA45						
MSA55						
MSA65						
MSA20L						
MSA25L						
MSA30L						
MSA35L	0~0.02C	0.03~0.05C	0.05~0.08C			
MSA45L						
MSA55L						
MSA65L						

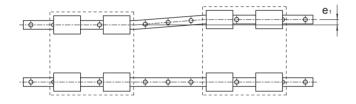
Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

MSA series

Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
15	0.5	0.5	3	4	4.2
20	0.5	0.5	3.5	5	5
25	1	1	5	5	6.5
30	1	1	5	5	8
35	1	1	6	6	9.5
45	1	1	8	8	10
55	1.5	1.5	10	10	13
65	1.5	1.5	10	10	15

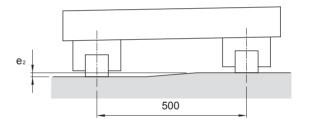
×PMI


Unit: mm

I. Dimensional Tolerance of Mounting Surface

MSA Series

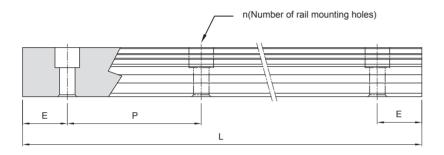
With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Model No.		Preload Grade										
Model No.	FC	F0	F1									
15	25	18	-									
20	25	20	18									
25	30	22	20									
30	40	30	27									
35	50	35	30									
45	60	40	35									
55	70	50	45									
65	80	60	55									

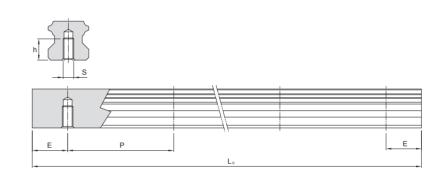
Level difference between two axes (e₂)


Unit: μm

Model No.		Preload Grade			
Model No.	FC	FO	F1		
15	130	85	-		
20	130	85	50		
25	130	85	70		
30	170	110	90		
35	210	150	120		
45	250	170	140		
55	300	210	170		
65	350	250	200		

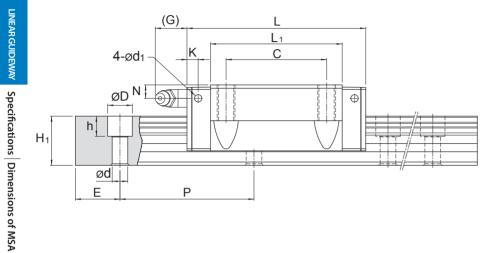
Note: The permissible values in table are applicable when the span is 500mm wide.

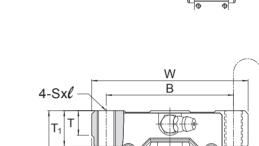
J. Rail Maximum Length and Standrad


 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- P: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge (*mm*)

Unit: mm


Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L₀ max.)
MSA 15	60	20	5	4000
MSA 20	60	20	6	4000
MSA 25	60	20	7	4000
MSA 30	80	20	8	4000
MSA 35	80	20	8	4000
MSA 45	105	22.5	11	4000
MSA 55	120	30	13	4000
MSA 65	150	35	14	4000


K. Tapped-hole Rail Dimensions

Rail Model	S	h(mm)
MSA 15 T	M5	8
MSA 20 T	M6	10
MSA 25 T	M6	12
MSA 30 T	M8	15
MSA 35 T	M8	17
MSA 45 T	M12	24
MSA 55 T	M14	24
MSA 65 T	M20	30

Dimensions of MSA-A / MSA-LA

W₂

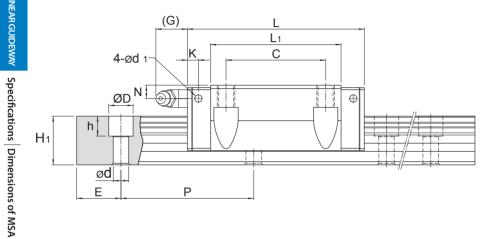
W₁

 H_2

Unit: mm

		Extern	al dimen	sion		Carriage dimension										
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	C	S×ℓ	L,	Т	T ₁	N	G	К	d ₁	Grease Nipple
MSA 15 A	24	47	56.3	16	4.2	38	30	M5×11	39.3	7	11	4.3	7	3.2	3.3	G-M4
MSA 20 A MSA 20 LA	30	63	72.9 88.8	21.5	5	53	40	M6×10	51.3 67.2	7	10	5	12	5.8	3.3	G-M6
MSA 25 A MSA 25 LA	36	70	81.6 100.6	23.5	6.5	57	45	M8×16	59 78	11	16	6	12	5.8	3.3	G-M6
MSA 30 A MSA 30 LA	42	90	97 119.2	31	8	72	52	M10×18	71.4 93.6	11	18	7	12	6.5	3.3	G-M6
MSA 35 A MSA 35 LA	48	100	111.2 136.6	33	9.5	82	62	M10×21	81 106.4	13	21	8	11.5	8.6	3.3	G-M6
MSA 45 A MSA 45 LA	60	120	137.7 169.5	37.5	10	100	80	M12×25	102.5 134.3	13	25	10	13.5	10.6	3.3	G-PT1/8

Note: Request for size 55 and 65 MSA-A / MSA-LA carriage, please refer to MSA-E / MSA-LE carriage type.

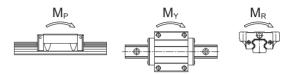

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

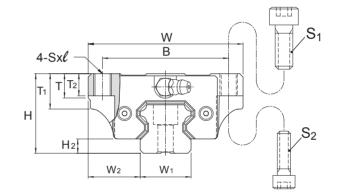
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

U	r	I	t:	r	n	r

		Ra	ail dim	ensio	n	Basic load	d rating		Static n		Weig	ht		
Model No.		Height			D×h×d	Dynamic C	Static C _o		M _P M _Y kN-m kN-m			M _R	Carriage	Rail
	W ₁	H,	Р	std.		kN	kN	Single*	Double*	Single*	Double*	kN-m	kg	kg/m
MSA 15 A	15	15	60	20	7.5×5.3×4.5	11.8	18.9	0.12	0.68	0.12	0.68	0.14	0.18	1.5
MSA 20 A MSA 20 LA	20	18	60	20	9.5×8.5×6	19.2 23.3	29.5 39.3	0.23 0.39	1.42 2.23	0.23 0.39	1.42 2.23	0.29 0.38	0.4 0.52	2.4
MSA 25 A MSA 25 LA	23	22	60	20	11×9×7	28.1 34.4	42.4 56.6	0.39 0.67	2.20 3.52	0.39 0.67	2.20 3.52	0.48 0.63	0.62 0.82	3.4
MSA 30 A MSA 30 LA	28	26	80	20	14×12×9	39.2 47.9	57.8 77.0	0.62 1.07	3.67 5.81	0.62 1.07	3.67 5.81	0.79 1.05	1.09 1.43	4.8
MSA 35 A MSA 35 LA	34	29	80	20	14×12×9	52.0 63.6	75.5 100.6	0.93 1.60	5.47 8.67	0.93 1.60	5.47 8.67	1.25 1.67	1.61 2.11	6.6
MSA 45 A MSA 45 LA	45	38	105	22.5	20×17×14	83.8 102.4	117.9 157.3	1.81 3.13	10.67 16.95	1.81 3.13	10.67 16.95		2.98 3.9	11.5

Dimensions of MSA-E / MSA-LE

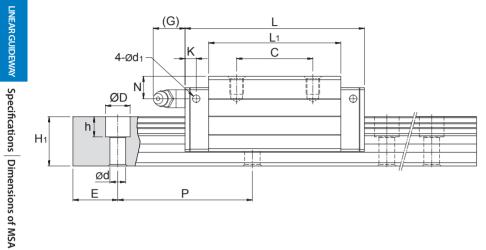



Unit: mm

		Extern	al dime	nsion						Carria	age dii	mens	ion				
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	S×ℓ	L ₁	Т	T,	T_2	N	G	K	d ₁	Grease Nipple
MSA 15 E	24	47	56.3	16	4.2	38	30	M5×7	39.3	7	11	7	4.3	7	3.2	3.3	G-M4
MSA 20 E MSA 20 LE	30	63	72.9 88.8	21.5	5	53	40	M6×10	51.3 67.2	7	10	10	5	12	5.8	3.3	G-M6
MSA 25 E MSA 25 LE	36	70	81.6 100.6	23.5	6.5	57	45	M8×10	59 78	11	16	10	6	12	5.8	3.3	G-M6
MSA 30 E MSA 30 LE	42	90	97 119.2	31	8	72	52	M10×10	71.4 93.6	11	18	10	7	12	6.5	3.3	G-M6
MSA 35 E MSA 35 LE	48	100	111.2 136.6	33	9.5	82	62	M10×13	81 106.4	13	21	13	8	11.5	8.6	3.3	G-M6
MSA 45 E MSA 45 LE	60	120	137.7 169.5	37.5	10	100	80	M12×15	102.5 134.3	13	25	15	10	13.5	10.6	3.3	G-PT 1/8
MSA 55 E MSA 55 LE	70	140	161.5 199.5	43.5	13	116	95	M14×17	119.5 157.5	19	32	17	11	13.5	8.6	3.3	G-PT 1/8
MSA 65 E MSA 65 LE	90	170	199 253	53.5	15	142	110	M16×23	149 203	21.5	37.5	23	19	13.5	8.6	3.3	G-PT 1/8

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

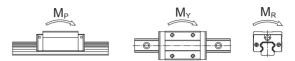


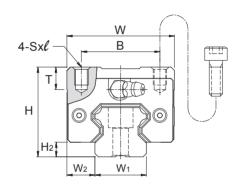
Model No.	Bolt Size							
Model No.	S ₁	S ₂						
MSA 15	M5	M4						
MSA 20	M6	M5						
MSA 25	M8	M6						
MSA 30	M10	M8						
MSA 35	M10	M8						
MSA 45	M12	M10						
MSA 55	M14	M12						
MSA 65	M16	M14						

Unit: mm

		R	ail din	nensio	n	Basic load	d rating		Static	momer	nt rating		Weig	ght
Model No.	Width W ₁	Height	Pitch P	E std.	D×h×d	Dynamic C	Static C _o	k١	M _P N-m	k٨	Λ _Y I-m	M _R kN-m	Carriage kg	Rail kg/m
MCAAFF		'			7.55.24.5	kN	kN	_	Double*	_	Double*		_	_
MSA 15 E	15	15	60	20	$7.5 \times 5.3 \times 4.5$	11.8	18.9	0.12	0.68	0.12	0.68	0.14	0.18	1.5
MSA 20 E MSA 20 LE	20	18	60	20	9.5×8.5×6	19.2 23.3	29.5 39.3	0.23	1.42 2.23	0.23	1.42 2.23	0.29 0.38	0.4 0.52	2.4
MSA 25 E MSA 25 LE	23	22	60	20	11×9×7	28.1 34.4	42.4 56.6	0.39 0.67	2.20 3.52	0.39 0.67	2.20 3.52	0.48 0.63	0.62 0.82	3.4
MSA 30 E MSA 30 LE	28	26	80	20	14×12×9	39.2 47.9	57.8 77.0	0.62 1.07	3.67 5.81	0.62 1.07	3.67 5.81	0.79 1.05	1.09 1.43	4.8
MSA 35 E MSA 35 LE	34	29	80	20	14×12×9	52.0 63.6	75.5 100.6	0.93 1.60	5.47 8.67	0.93 1.60	5.47 8.67	1.25 1.67	1.61 2.11	6.6
MSA 45 E MSA 45 LE	45	38	105	22.5	20×17×14	83.8 102.4	117.9 157.3	1.81 3.13	10.67 16.95	1.81 3.13	10.67 16.95	2.57 3.43	2.98 3.9	11.5
MSA 55 E MSA 55 LE	53	44	120	30	23×20×16	123.6 151.1	169.8 226.4	3.13 5.40	17.57 28.11	3.13 5.40	17.57 28.11	4.50 6.00	4.17 5.49	15.5
MSA 65 E MSA 65 LE	63	53	150	35	26×22×18	198.8 253.5	265.3 375.9	6.11 11.84	33.71 57.32	6.11 11.84	33.71 57.32	8.36 11.84	8.73 11.89	21.9

Dimensions of MSA-S / MSA-LS

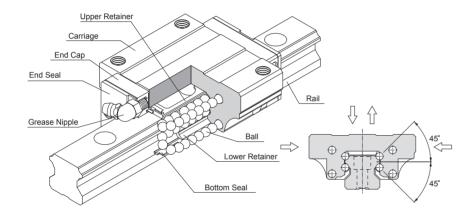



Unit: mm

		Extern	al dimer	nsion					Car	riage d	limen	sion			
Model No.	Height H	Width W	Length	W ₂	H ₂	В	С	$S \times \ell$	L,	Т	N	G	К	d ₁	Grease
MCA 1F C			FC 2	٥٢	4.2	26	26	MANE	20.2	7.2	0.2	7	2.2	2.2	Nipple
MSA 15 S	28	34	56.3	9.5	4.2	26	26	M4×5	39.3	7.2	8.3	7	3.2	3.3	G-M4
MSA 20 S MSA 20 LS	30	44	72.9 88.8	12	5	32	36 50	M5×6	51.3 67.2	8	5	12	5.8	3.3	G-M6
MSA 25 S MSA 25 LS	40	48	81.6 100.6	12.5	6.5	35	35 50	M6×8	59 78	10	10	12	5.8	3.3	G-M6
MSA 30 S MSA 30 LS	45	60	97 119.2	16	8	40	40 60	M8×10	71.4 93.6	11.7	10	12	6.5	3.3	G-M6
MSA 35 S MSA 35 LS	55	70	111.2 136.6	18	9.5	50	50 72	M8×12	81 106.4	12.7	15	11.5	8.6	3.3	G-M6
MSA 45 S MSA 45 LS	70	86	137.7 169.5	20.5	10	60	60 80	M10×17	102.5 134.3	16	20	13.5	10.6	3.3	G-PT 1/8
MSA 55 S MSA 55 LS	80	100	161.5 199.5	23.5	13	75	75 95	M12×18	119.5 157.5	18	21	13.5	8.6	3.3	G-PT 1/8
MSA 65 S MSA 65 LS	90	126	199 253	31.5	15	76	70 120	M16×20	149 203	23	19	13.5	8.6	3.3	G-PT 1/8

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



Unit: mm

	Rail dimension				Basic load rating Static		moment rating		Weight					
Model No.	Width W ₁	Height H ₁	Pitch P	E std.	D×h×d	Dynamic C kN	Static C _o kN	k۱	И _Р l-m Double [*]	k۱	Λ _γ l-m Double [*]	M _R kN-m	Carriage kg	Rail kg/m
MSA 15 S	15	15	60	20	7.5×5.3×4.5	11.8	18.9	0.12	0.68	0.12	0.68	0.14	0.18	1.5
MSA 20 S MSA 20 LS	20	18	60	20	9.5×8.5×6	19.2 23.3	29.5 39.3	0.23 0.39	1.42 2.23	0.23 0.39	1.42 2.23	0.29 0.38	0.3 0.39	2.4
MSA 25 S MSA 25 LS	23	22	60	20	11×9×7	28.1 34.4	42.4 56.6	0.39 0.67	2.20 3.52	0.39 0.67	2.20 3.52	0.48 0.63	0.52 0.68	3.4
MSA 30 S MSA 30 LS	28	26	80	20	14×12×9	39.2 47.9	57.8 77.0	0.62 1.07	3.67 5.81	0.62 1.07	3.67 5.81	0.79 1.05	0.86 1.12	4.8
MSA 35 S MSA 35 LS	34	29	80	20	14×12×9	52.0 63.6	75.5 100.6	0.93 1.60	5.47 8.67	0.93 1.60	5.47 8.67	1.25 1.67	1.45 1.9	6.6
MSA 45 S MSA 45 LS	45	38	105	22.5	20×17×14	83.8 102.4	117.9 157.3	1.81 3.13	10.67 16.95	1.81 3.13	10.67 16.95	2.57 3.43	2.83 3.7	11.5
MSA 55 S MSA 55 LS	53	44	120	30	23×20×16	123.6 151.1	169.8 226.4	3.13 5.40	17.57 28.11	3.13 5.40	17.57 28.11	4.50 6.00	4.12 4.91	15.5
MSA 65 S MSA 65 LS	63	53	150	35	26×22×18	198.8 253.5	265.3 375.9	6.11 11.84	33.71 57.32	6.11 11.84	33.71 57.32	8.36 11.84	6.43 8.76	21.9

12.2 Compact Type, MSB Series

A. Construction

B. Characteristics

The trains of balls are designed to a contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSB series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.

The patent design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

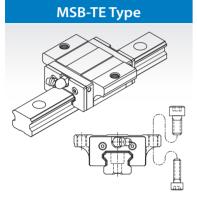
Compact, Four-way Equal Load

Compact design of the carriage with the four trains of balls are allocated to a circular contact angle at 45°, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

Self Alignment Capability


The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

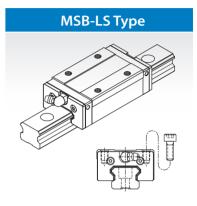
Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

C. Carriage Type

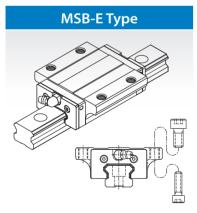
Medium Load

This type offers the installation either from top or bottom side of carriage.


MSB-TS Type

Square type with smaller width and can be installed from top side of carriage.

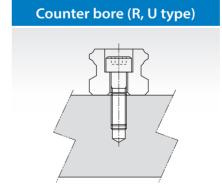
Ultra Heavy Load

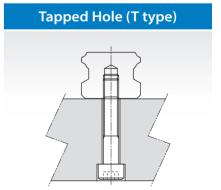


All dimensions are same as MSB-E except the length is longer, which makes it more rigid.

All dimensions are same as MSB-S except the length is longer, which makes it more rigid.

Heavy Load

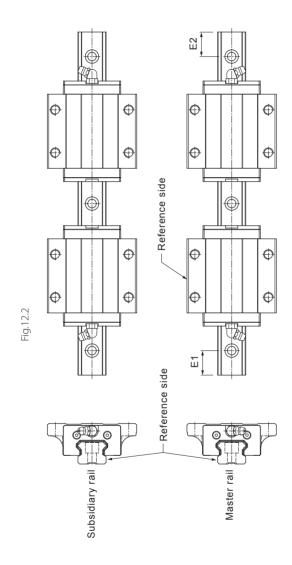



All dimensions are same as MSB-TE except the length is longer, which makes it more rigid.

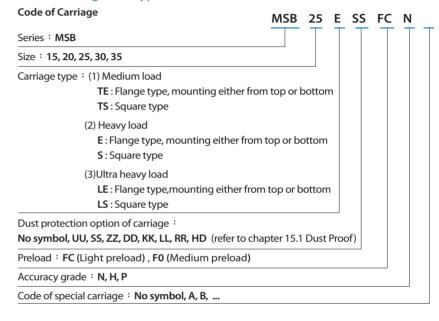
MSB-S Type

All dimensions are same as MSB-TS except the length is longer, which makes it more rigid.

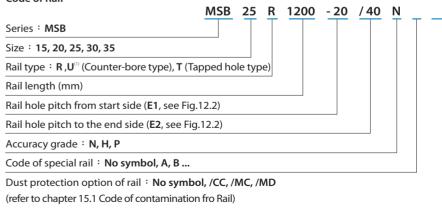
D. Rail type



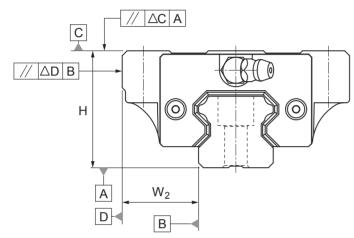
E. Description of Specification


(1) Non-Interchangeable Type MSB 25 E 2 SS F0 +R 1200 -20 /40 P Ш Series : MSB Size: 15, 20, 25, 30, 35 Carriage type: (1) Medium load TE: Flange type, mounting either from top or bottom TS: Square type (2) Heavy load E: Flange type, mounting either from top or bottom **S**: Square type (3)Ultra heavy load LE: Flange type, mounting either from top or bottom LS: Square type Number of carriages per rail: 1, 2, 3 ... Dust protection option of carriage: No symbol, UU, SS, ZZ, DD, KK, LL, RR, HD (refer to chapter 15.1 Dust Proof) Preload: FC (Light preload), F0 (Medium preload), F1 (Heavy preload) Code of special carriage: No symbol, A, B, ... Rail type: R,U⁽¹⁾ (Counter-bore type), T (Tapped hole type) Rail length (mm) Rail hole pitch from start side (E1, see Fig.12.2) Rail hole pitch to the end side (E2, see Fig.12.2) Accuracy grade : N, H, P, SP, UP Code of special rail: No symbol, A, B ... Dust protection option of rail: No symbol, /CC, /MC, /MD (refer to chapter 15.1 Code of contamination fro Rail) Number of rails per axis: No symbol, II, III, IV ...

Notr⁽¹⁾: U type rail is only applicable for MSB15 with M4 mounting hole.


XPMI

(2) Interchangeable Type


Code of Rail

Notr⁽¹⁾: U type rail is only applicable for MSB15 with M4 mounting hole.

F. Accuracy Grade

Table 1 Running Parallelism

Rail leng	gth (mm)	Running Parallelism Values(μm)						
Above	Or less	N	Н	Р	SP	UP		
0	315	9	6	3	2	1.5		
315	400	11	8	4	2	1.5		
400	500	13	9	5	2	1.5		
500	630	16	11	6	2.5	1.5		
630	800	18	12	7	3	2		
800	1000	20	14	8	4	2		
1000	1250	22	16	10	5	2.5		
1250	1600	25	18	11	6	3		
1600	2000	28	20	13	7	3.5		
2000	2500	30	22	15	8	4		
2500	3000	32	24	16	9	4.5		
3000	3500	33	25	17	11	5		
3500	4000	34	26	18	12	6		

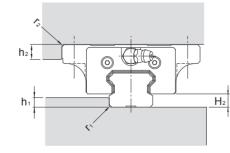
A Non-Interchangeable Type

		Accuracy Grade						
Model No.	ltem	Normal N	High H	Precision P	Super Precision SP	Ulitra Precision UP		
	Tolerance for height H	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008		
	Height difference ΔH	0.02	0.01	0.006	0.004	0.003		
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008		
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006	0.004	0.003		
	Running parallelism of surface C with surface A							
	Running parallelism of surface D with surface B	ΔD (see the table 1)						
	Tolerance for height H	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01		
	Height difference ΔH	0.02	0.015	0.007	0.005	0.003		
25	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01		
30 35	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007	0.005	0.003		
	Running parallelism of surface C with surface A	ΔC (see the table 1)						
	Running parallelism of surface D with surface B	ΔD (see the table 1)						

B Interchangeable Type

Model		Accuracy Grade					
No.	ltem	Normal N	High H	Precision P			
	Tolerance for height H	±0.1	±0.03	0 -0.03			
	Height difference ΔH	0.02	0.01	0.006			
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03			
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.02 0.01				
	Running parallelism of surface C with surface A	ΔC (see the table 1)					
	Running parallelism of surface D with surface B	ΔD (see the table 1)					
	Tolerance for height H	±0.1	±0.04	0 -0.04			
	Height difference ΔH	0.02	0.015	0.007			
25	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04			
30 35	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007			
	Running parallelism of surface C with surface A	ΔC (see the table 1)					
	Running parallelism of surface D with surface B	ΔD (see the table 1)					

G. Preload Grade

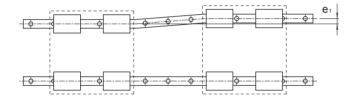

Series	Preload grade					
Series	Light preload (FC) Medium preload (F0)		Heavy preload (F1)			
MSB15T			-			
MSB20T	0~0.02C	0.03.0.056				
MSB25T		0.03~0.05C	0.05~0.08C			
MSB30T						
MSB15						
MSB20			0.05~0.08C			
MSB25	0~0.02C	0.03~0.05C				
MSB30	0~0.02C	0.03~0.03C	0.05~0.06C			
MSB35						
MSB35L						

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

MSB series

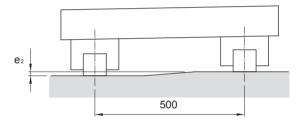
Unit: mm


	Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
	15	0.5	0.5	3	4	4.5
	20	0.5	0.5	4	5	6
	25	1	1	5	5	7
+	30	1	1	7	5	9.5
1	35	1	1	8	6	9.5
+		1	1	,		

I. Dimensional Tolerance of Mounting Surface

MSB Series

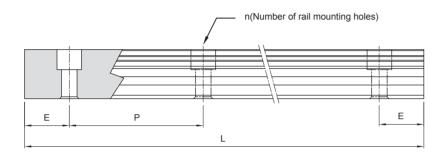
With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Model No.	Preload Grade							
Model No.	FC	F0	F1					
15	25	18	-					
20	25	20	18					
25	30	22	20					
30	40	30	27					
35	50	35	30					

Level difference between two axes (e₂)


Unit: μm

Model No.	Preload Grade							
woder No.	FC	FO	F1					
15	130	85	-					
20	130	85	50					
25	130	85	70					
30	170	110	90					
35	210	150	120					

Note: The permissible values in table are applicable when the span is 500mm wide.

J. Rail Maximum Length and Standrad


 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- P: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge (*mm*)

Unit: mm

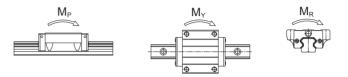
Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L₀ max.)
MSB 15	60	20	5	4000
MSB 20	60	20	6	4000
MSB 25	60	20	7	4000
MSB 30	80	20	7	4000
MSB 35	80	20	8	4000

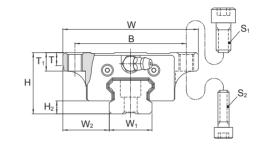
K. Tapped-hole Rail Dimensions

Rail Model	S	h(mm)
MSB 15 T	M5	7
MSB 20 T	M6	9
MSB 25 T	M6	10
MSB 30 T	M8	14
MSB 35 T	M8	16

Dimensions of MSB-TE / MSB-E

MSB-E MSB-TE 4-Sxℓ L₁ 4-ød1 С _2-Sxℓ 0 Ød Р

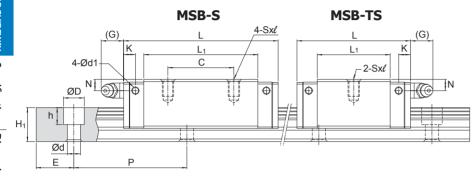

Unit: mm

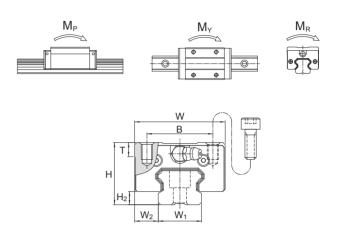

		Extern	al dimens	sion		Carriage dimension										
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	S×ℓ	L ₁	Т	T ₁	N	G	K	d ₁	Grease Nipple
MSB 15 TE MSB 15 E	24	52	40 57	18.5	4.5	41	- 26	M5×7	23.5 40.5	5	7	5.5	5.5	5.1	3.3	G-M4
MSB 20 TE MSB 20 E	28	59	48 67	19.5	6	49	- 32	M6×9	29 48	5	9	5.5	12	5.9	3.3	G-M6
MSB 25 TE MSB 25 E	33	73	60.2 82	25	7	60	- 35	M8×10	38.7 60.5	7	10	6	12	6.3	3.3	G-M6
MSB 30 TE MSB 30 E	42	90	68 96.7	31	9.5	72	- 40	M10×10	43.3 72	7	10	8	12	6.3	3.3	G-M6
MSB 35 TE MSB 35 E MSB 35 LE	48	100	78 112 137.5	33	9.5	82	- 50 72	M10×13	46 80 105.5	9	13	8.5	12	9.8	3.3	G-M6

Note: Rail mounting holes for M3 (6x4.5x3.5) and M4 (7.5x5.3x4.5) are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.





Model No.	Bolt	Size
Model No.	S ₁	S ₂
MSB 15	M5	M4
MSB 20	M6	M5
MSB 25	M8	M6
MSB 30	M10	M8
MSB 35	M10	M8

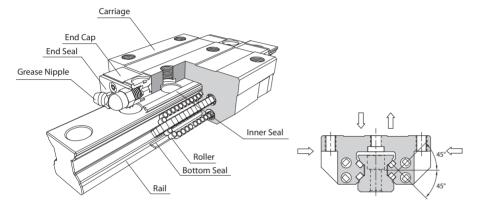
	Rail dimension			ion	Basic load	rating		Static	mome	nt rating	J	Weig	ht	
Model No.	Width W.	Height H,	Pitch P	E std.	D×h×d	Dynamic C	Static C _o	k۱	√l _p √l-m	k۱	М _Y N-m	M _R kN-m	Carriage kg	Rail kg/m
	W 1	''1	'	stu.		kN	kN	Single*	Double*	Single*	Double*	KIN-III	kg	kg/III
MSB 15 TE MSB 15 E	15	12.5	60	20	6×4.5×3.5 (7.5×5.3×4.5)	6.7 10.0	9.6 16.9	0.04 0.10	0.26 0.61	0.04 0.10	0.26 0.61	0.07 0.13	0.12 0.21	1.2
MSB 20 TE MSB 20 E	20	15	60	20	9.5×8.5×6	9.7 13.9	14.2 23.6	0.07 0.18	0.44 0.97	0.07 0.18	0.44 0.97	0.14 0.24	0.20 0.34	2
MSB 25 TE MSB 25 E	23	18	60	20	11×9×7	15.6 22.3	22.1 36.9	0.13 0.35	0.91 1.87	0.13 0.35	0.91 1.87	0.26 0.43	0.39 0.60	3
MSB 30 TE MSB 30 E	28	23	80	20	11×9×7	23.1 32.9	31.8 53.1	0.23 0.60	1.39 3.15	0.23 0.60	1.39 3.15	0.45 0.74	0.65 1.08	4.4
MSB 35 TE MSB 35 E MSB 35 LE	34	27.5	80	20	14×12×9	35.7 52.0 63.6	44.0 75.5 100.6	0.34 0.93 1.60	2.81 5.47 8.67	0.34 0.93 1.60	2.81 5.47 8.67	0.75 1.28 1.67	0.91 1.61 1.80	6.2 6.6

Dimensions of MSB-TS / MSB-S

Unit: mm

	External dimension						Carriage dimension								
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	S×ℓ	L ₁	Т	N	G	К	d ₁	Grease Nipple
MSB 15 TS MSB 15 S	24	34	40 57	9.5	4.5	26	- 26	M4×6	23.5 40.5	6	5.5	5.5	5.1	3.3	G-M4
MSB 20 TS MSB 20 S	28	42	48 67	11	6	32	- 32	M5×7	29 48	6	5.5	12	5.9	3.3	G-M6
MSB 25 TS MSB 25 S	33	48	60.2 82	12.5	7	35	- 35	M6×9	38.7 60.5	8	6	12	6.3	3.3	G-M6
MSB 30 TS MSB 30 S	42	60	68 96.7	16	9.5	40	- 40	M8×12	43.3 72	8	8	12	6.3	3.3	G-M6
MSB 35 TS MSB 35 S MSB 35 LS	48	70	78 112 137.5	18	9.5	50	- 50 72	M8×12	46 80 105.5	12.5	8.5	11.5	9.8	3.3	G-M6

Note: Rail mounting holes for M3 (6x4.5x3.5) and M4 (7.5x5.3x4.5) are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.


Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is C=1.26 x C_{100} .

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

			Rail dir	nensi	on	Basic load	d rating		Static r	nomer	nt rating		Weig	ght
Model No.	Width W ₁	Height H ₁	Pitch P	E std.	D×h×d	Dynamic C kN	Static C _o kN	k۱	N _P N-m Double*	k۱	VI _Y V-m	M _R kN-m	Carriage kg	Rail kg/m
MSB 15 TS MSB 15 S	15	12.5	60	20	6×4.5×3.5 (7.5×5.3×4.5)	6.7 10.0	9.6 16.9	0.04 0.10	0.26 0.61	0.04 0.10	0.26 0.61	0.07 0.13	0.09 0.16	1.2
MSB 20 TS MSB 20 S	20	15	60	20	9.5×8.5×6	9.7 13.9	14.2 23.6	0.07 0.18	0.44 0.97	0.07 0.18	0.44 0.97	0.14 0.24	0.16 0.26	2
MSB 25 TS MSB 25 S	23	18	60	20	11×9×7	15.6 22.3	22.1 36.9	0.13 0.35	0.91 1.87	0.13 0.35	0.91 1.87	0.26 0.43	0.29 0.45	3
MSB 30 TS MSB 30 S	28	23	80	20	11×9×7	23.1 32.9	31.8 53.1	0.23 0.60	1.39 3.15	0.23 0.60	1.39 3.15	0.45 0.74	0.52 0.82	4.4
MSB 35 TS MSB 35 S MSB 35 LS	34	27.5	80	20	14×12×9	35.7 52.0 63.6	44.0 75.5 100.6	0.34 0.93 1.60	2.81 5.47 8.67	0.34 0.93 1.60	2.81 5.47 8.67	0.75 1.28 1.67	0.81 1.13 1.49	6.2

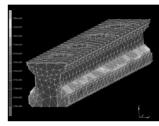
12.3 Full Roller Type, MSR Series

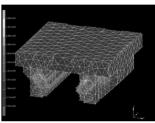
A. Construction



B. Characteristics

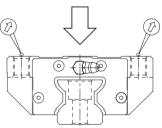
The full roller type linear guideway, MSR series, equip with rollers instead of the ball, and therefore the MSR series can provide higher rigidity and loading than the normal type with the same size. Especially suit for the requests of high accuracy, heavy load and high rigidity.


Ultra Heavy Load


MSR linear guideway through rollers have a line contact with carriage and rail. Relative to the general type linear guideway through balls have a point contact; the MSR type linear guideway can offer lower elastic deformation while bearing the same load. Base on the rollers have the same outer diameter with balls, the roller can bear the heavier load. The excellent characteristics of high rigidity and ultra heavy load can suitable for the high accuracy application that heavy load is processed even more.

The Optimization Design of Four Directional Load

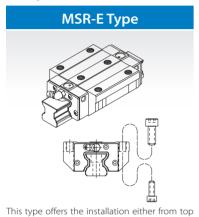
Through the structure stress analysis of finite element method, SMR series have four trains of rollers are designed to a contact angle of 45° and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

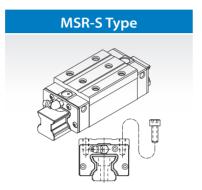




Ultra High Rigidity

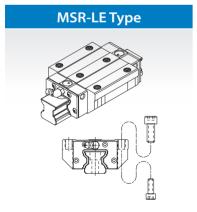
Test data of rigidity


Test samples: Ball type MSA30LE with preload F1
Full roller type MSR30LE with preload F1
Roller chain type SMR30LE with preload F1



C. Carriage Type

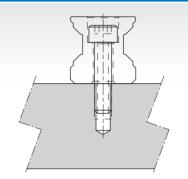
Heavy Load



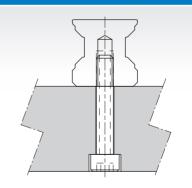
Square type with smaller width and can be installed from top side of carriage.

Ultra Heavy Load

or bottom side of carriage.

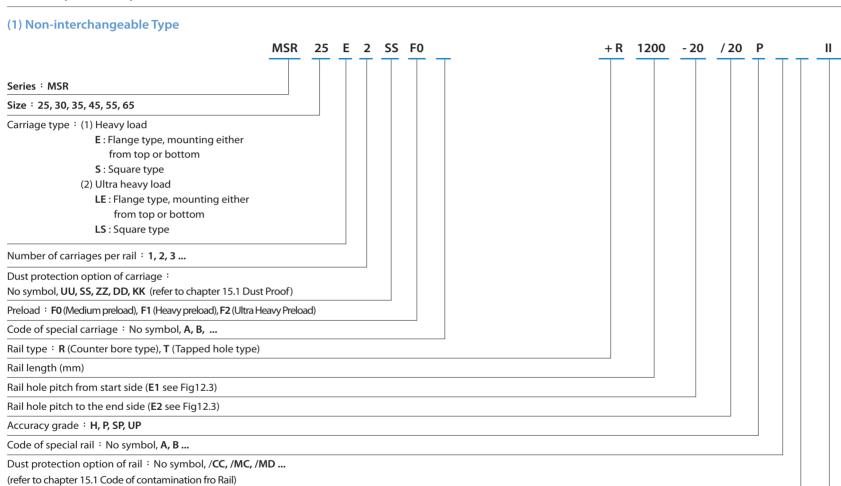

All dimensions are same as MSR-E except the length is longer, which makes it more rigid.

MSR-LS Type

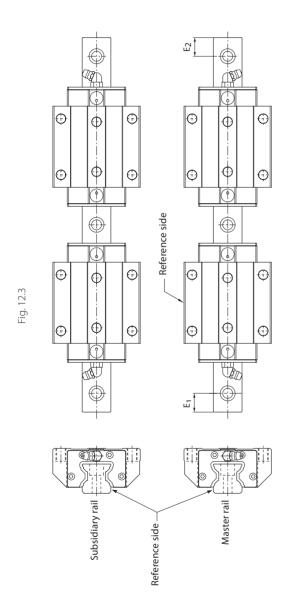

All dimensions are same as MSR-S except the length is longer, which makes it more rigid.

D. Rail Type

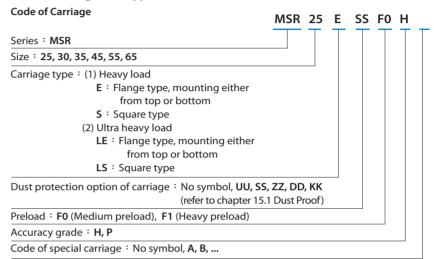
Counter bore (R type)

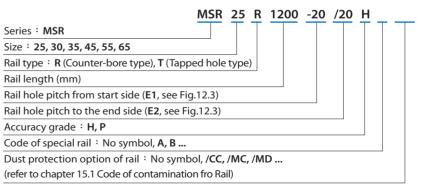


Tapped Hole (T type)



E. Description of Specification


Number of rails per axis: No symbol, II, III, IV ...


 $\times PMI$

(2) Interchangeable Type

Code of Rail

F. Accuracy Grade

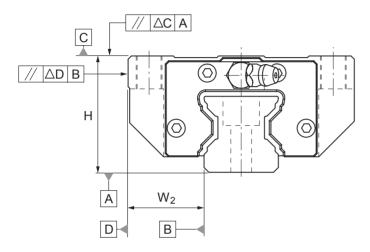


Table 1 Running Parallelism

Rail len	gth (mm)		Running Parallelism Values(μm)						
Above	Or less	Н	Р	SP	UP				
0	315	6	3	2	1.5				
315	400	8	4	2	1.5				
400	500	9	5	2	1.5				
500	630	11	6	2.5	1.5				
630	800	12	7	3	2				
800	1000	14	8	4	2				
1000	1250	16	10	5	2.5				
1250	1600	18	11	6	3				
1600	2000	20	13	7	3.5				
2000	2500	22	15	8	4				
2500	3000	24	16	9	4.5				
3000	3500	25	17	11	5				
3500	4000	26	18	12	6				

A Non-Interchangeable Type

			Accurac	y Grade	
Model No.	ltem.	High H	Precision P	Super Precision SP	Ulitra Precision UP
	Tolerance for height H	±0.04	0 -0.04	0 -0.02	0 -0.01
	Height difference ΔH	0.015	0.007	0.005	0.003
25 30	Tolerance for distance W ₂	±0.04	0 -0.04	0 -0.02	0 -0.01
35	Difference in distance $W_2(\Delta W_2)$	0.015	0.007	0.005	0.003
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)	
	Running parallelism of surface D with surface B		ΔD (see th	ne table 1)	
	Tolerance for height H	±0.05	0 -0.05	0 -0.03	0 -0.02
	Height difference ΔH	0.015	0.007	0.005	0.003
45	Tolerance for distance W ₂	±0.05	0 -0.05	0 -0.03	0 -0.02
55	Difference in distance W ₂ (ΔW ₂)	0.02	0.01	0.007	0.005
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)	
	Running parallelism of surface D with surface B		ΔD (see th	ne table 1)	
	Tolerance for height H	±0.07	0 -0.07	0 -0.05	0 -0.03
	Height difference ΔH	0.02	0.01	0.007	0.005
65	Tolerance for distance W₂	±0.07	0 -0.07	0 -0.05	0 -0.03
	Difference in distance W ₂ (ΔW ₂)	0.025	0.015	0.01	0.007
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)	
	Running parallelism of surface D with surface B		ΔD (see th	ne table 1)	

B Interchangeable Type

Model		Accurac	y Grade
No.	ltem.	High H	Precision P
	Tolerance for height H	±0.04	0 -0.04
25	Height difference ΔH	0.015	0.007
25 30	Tolerance for distance W₂	±0.04	0 -0.04
35	Difference in distance $W_2(\Delta W_2)$	0.015	0.007
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)
	Tolerance for height H	±0.05	0 -0.05
	Height difference ΔH	0.015	0.007
45	Tolerance for distance W ₂	±0.05	0 -0.05
55	Difference in distance $W_2(\Delta W_2)$	0.02	0.01
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)
	Tolerance for height H	±0.07	0 -0.07
	Height difference ΔH	0.02	0.01
65	Tolerance for distance W₂	±0.07	0 -0.07
	Difference in distance $W_2(\Delta W_2)$	0.025	0.015
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)

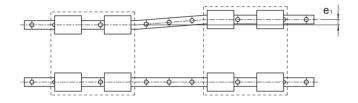
G. Preload Grade

		Preload grade	
Series	Medium preload (F0)	Heavy preload(F1)	Ultra heavy preload(F2)
MSR25			
MSR30			
MSR35	0.04~0.06C	0.07~0.09C	0.12~0.14C
MSR45			
MSR55			
MSR25L			
MSR30L			
MSR35L	0.04~0.06C	0.07~0.09C	0.12~0.14C
MSR45L	0.04~0.06C	0.07~0.09C	0.12~0.14C
MSR55L			
MSR65L			

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

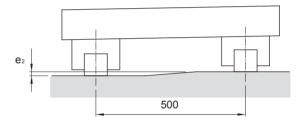
MSR series


Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
25	0.5	0.5	4	8	4.8
30	0.5	0.5	5	8	6
35	1	1	5.5	10	6.5
45	1	1	6	12	8.1
55	1	1	8	15	10
65	1	1	10	15	12

I. Dimensional Tolerance of Mounting Surface

MSR Series

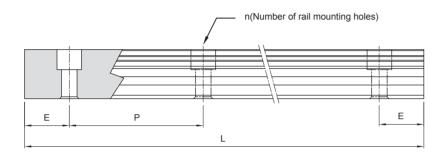
With the high rigidity, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Model No.		Preload Grade	
Model No.	F0	F1	F2
25	9	7	5
30	11	8	6
35	14	10	7
45	17	13	9
55	21	14	11
65	27	18	14

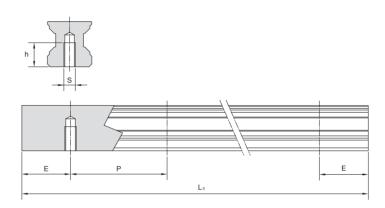
Level difference between two axes (e₂)


Unit: μm

Model No.		Preload Grade	
Model No.	F0	F1	F2
25			
30			
35	150	105	E E
45	150	105	55
55			
65			

Note: The permissible values in table are applicable when the span is 500mm wide.

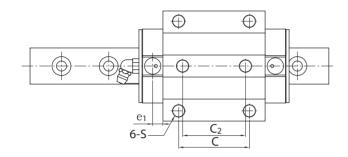
J. Rail Maximum Length and Standrad

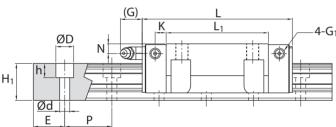

 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- *P*: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge (*mm*)

Unit: mm

Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L ₀ max.) 4000 4000				
MSR 25	30	20	7	4000				
MSR 30	40	20	8	4000				
MSR 35	40	20	8	4000				
MSR 45	52.5	22.5	11	4000				
MSR 55	60	30	13	4000				
MSR 65	75	35	14	4000				

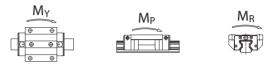

K. Tapped-hole Rail Dimensions

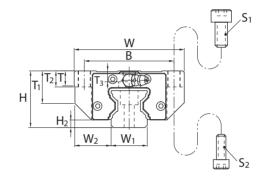


Rail Model	S	h(mm)
MSR 25 T	M6	12
MSR 30 T	M8	15
MSR 35 T	M8	17
MSR 45 T	M12	24
MSR 55 T	M14	24
MSR 65 T	M20	30

Specifications Dimensions of MSR

Dimensions of MSR-E / MSR-LE

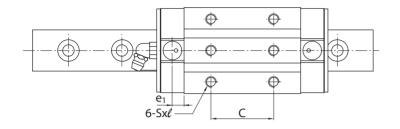


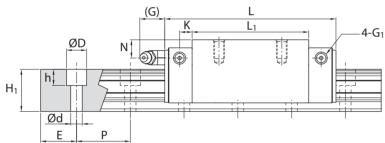

H ₁	ØD N	K L	4-G ₁
	h h		

	Е	xterna	dimens	sion							C	arriag	e dii	mensi	on					
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	c	C ₂	S	L ₁	Т	Т,	T ₂	T ₃	N	G	K	e ₁	G ₁	Grease Nipple
MSR 25 E MSR 25 LE	36	70	97.5 115.5	23.5	4.8	57	45	40	M8	65.5 83.5	9.5	20.2	10	5.8	6	12	6.6	6.5	M6	G-M6
MSR 30 E MSR 30 LE	42	90	112.4 135.2	31	6	72	52	44	M10	75.9 98.7	10	21.6	13	6.7	7	12	8	7	М6	G-M6
MSR 35 E MSR 35 LE	48	100	125.3 153.5	33	6.5	82	62	52	M10	82.3 110.5	12	27.5	15	9.5	8	12	8	7	M6	G-M6
MSR 45 E MSR 45 LE	60	120	154.2 189.4	37.5	8	100	80	60	M12	106.5 141.7	14.5	35.5	15	12.5	10	13.5	10	10	М6	G-PT 1/8
MSR 55 E MSR 55 LE	70	140	185.4 235.4	43.5	10	116	95	70	M14	129.5 179.5	17.5	41	18	15.5	11	13.5	12	7.95	M6	G-PT 1/8
MSR 65 LE	90	170	302	53.5	12	142	110	82	M16	230	19.5	56	20	26	16.5	13.5	15	15	M6	G-PT

Unit: mm

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

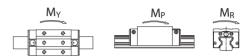


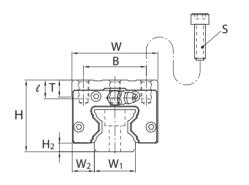


Model No.	Bolt Size							
Model No.	S ₁	S ₂						
MSR 25	M8	M6						
MSR 30	M10	M8						
MSR 35	M10	M8						
MSR 45	M12	M10						
MSR 55	M14	M12						
MSR 65	M16	M14						

		Ra	il dime	nsior	1	Basic loa	d rating		Static r	nomen	t rating		Weig	ht
Model No.	Width	Height	Pitch	Е	Dubud	Dynamic C	Static		M _P		M _Y	M _R	Carriage	Rail
	W ₁	Н,	Р	std.	D×h×d	kN	C₀ kN	Single*	N-m Double*	Single*	V-m Double*	kN-m	kg	kg/m
MSR 25 E MSR 25 LE	23	23.5	30	20	11×9×7	29.6 36.3	63.8 82.9	0.65 1.08	3.82 5.94	0.65 1.08	3.82 5.94	0.73 0.95	0.75 0.95	3.5
MSR 30 E MSR 30 LE	28	27.5	40	20	14×12×9	42.8 54.0	91.9 124.0	1.09 1.96	6.38 10.60	1.09 1.96	6.38 10.60	1.27 1.75	1.4 1.72	5
MSR 35 E MSR 35 LE	34	30.5	40	20	14×12×9	57.9 73.9	123.5 169.0	1.59 2.94	9.56 16.18	1.59 2.94	9.56 16.18	2.09 2.85	1.95 2.45	7
MSR 45 E MSR 45 LE	45	37	52.5	22.5	20×17×14	92.8 117.2	193.8 261.6	3.28 5.90	18.76 31.32	3.28 5.90	18.76 31.32	4.40 5.94	3.9 4.5	11.2
MSR 55 E MSR 55 LE	53	43	60	30	23×20×16	132.8 172.5	270.0 378.0	5.49 10.60	31.18 55.58	5.49 10.60	31.18 55.58	7.33 10.28	6 7.9	15.6
MSR 65 LE	63	52	75	35	26×22×18	277.0	624.0	22.50	117.87	22.50	117.87	20.02	17.6	22.4

Dimensions of MSR-S / MSR-LS

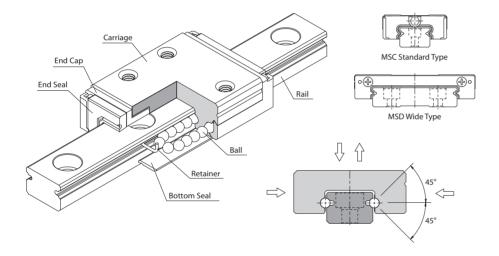




				-1-		-												
																		Unit: mm
			Extern	al dimen	sion						Ca	arriag	e dime	ension				
	Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	S	l	L ₁	Т	N	G	K	e ₁	G ₁	Grease Nipple
	MSR 25 S MSR 25 LS	40	48	97.5 115.5	12.5	4.8	35	35 50	M6	9	65.5 83.5	9.5	10	12	6.6	6.5	M6	G-M6
	MSR 30 S MSR 30 LS	45	60	112.4 135.2	16	6	40	40 60	M8	12	75.9 98.7	10	10	12	8	7	M6	G-M6
-	MSR 35 S MSR 35 LS	55	70	125.3 153.5	18	6.5	50	50 72	M8	14	82.3 110.5	12	15	12	8	7	M6	G-M6
- 1	MSR 45 S MSR 45 LS	70	86	154.2 189.4	20.5	8	60	60 80	M10	19	106.5 141.7	17	20	13.5	10	10	M6	G-PT 1/8
	MSR 55 S MSR 55 LS	80	100	185.4 235.4	23.5	10	75	75 95	M12	19	129.5 179.5	18	21	13.5	12	7.95	M6	G-PT 1/8
ı	MCD 65 IC	οο	126	202	215	12	76	120	1/16	20	220	10.5	165	125	15	15	1/16	C DT 1/0

90 126 302 31.5 12 76 120 M16 20 230 19.5 16.5 13.5 15 15 M6 G-PT 1/8

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



Unit: mm

	Ra	il dim	ensior	1	Basic load	d rating		Static r	noment	rating		Weig	ht
				D×h×d	Dynamic C	Static C _o				•	M _R		
VV ₁	Н	Р	std.		kN	kN	Single*	Double*	Single*	Double*	kN-m	kg	kg/m
22	22.5	20	20	11,0,7	29.6	63.8	0.65	3.82	0.65	3.82	0.73	0.65	3.5
23	23.3	30	20	11/3//	36.3	82.9	1.08	5.94	1.08	5.94	0.95	0.85	3.3
20	27.5	40	20	14×12×0	42.8	91.9	1.09	6.38	1.09	6.38	1.27	1	5
20	27.3	40	20	14/12/9	54.0	124.0	1.96	10.60	1.96	10.60	1.72	1.22	3
21	20.5	40	20	14×12×0	57.9	123.5	1.59	9.56	1.59	9.56	2.09	1.65	7
34	30.3	40	20	14/12/9	73.9	169.0	2.94	16.18	2.94	16.18	2.85	2.15	
15	27	52.5	22.5	20~17~14	92.8	193.8	3.28	18.76	3.28	18.76	4.40	3.2	11.2
43	37	32.3	22.3	20/1//14	117.2	261.6	5.90	31.32	5.90	31.32	5.94	4.1	11.2
52	12	60	20	22×20×16	132.8	270.0	5.49	31.18	5.49	31.18	7.33	5.1	15.6
23	43	00	30	23^20×10	172.5	378.0	10.60	55.58	10.60	55.58	10.26	7	13.0
63	52	75	35	26×22×18	277.0	624.0	22.50	117.87	22.50	117.87	20.02	13.3	22.4
	W ₁ 23 28 34 45 53	Width W ₁ Height H ₁ 23 23.5 28 27.5 34 30.5 45 37 53 43	Width W ₁ Height P Pitch P 23 23.5 30 28 27.5 40 34 30.5 40 45 37 52.5 53 43 60	Width W ₁ Height H ₁ Pitch P std. E std. 23 23.5 30 20 28 27.5 40 20 34 30.5 40 20 45 37 52.5 22.5 53 43 60 30	Width W ₁ Height H ₁ Pitch P std. E std. D×h×d 23 23.5 30 20 11×9×7 28 27.5 40 20 14×12×9 34 30.5 40 20 14×12×9 45 37 52.5 22.5 20×17×14 53 43 60 30 23×20×16	Width W_1 Height W_1 Pitch P E std. $D \times h \times d$ Dynamic C_{kN} 23 23.5 30 20 $11 \times 9 \times 7$ 29.6 36.3 28 27.5 40 20 $14 \times 12 \times 9$ 42.8 54.0 34 30.5 40 20 $14 \times 12 \times 9$ 57.9 73.9 45 37 52.5 22.5 $20 \times 17 \times 14$ 92.8 117.2 53 43 60 30 $23 \times 20 \times 16$ 132.8 172.5	Width W_1 Height W_1 Pitch P E std. $D \times h \times d$ Dynamic C KN Static C KN 23 23.5 30 20 $11 \times 9 \times 7$ 29.6 63.8 82.9 28 27.5 40 20 $14 \times 12 \times 9$ 42.8 91.9 124.0 34 30.5 40 20 $14 \times 12 \times 9$ 57.9 73.9 169.0 45 37 52.5 22.5 $20 \times 17 \times 14$ 92.8 117.2 193.8 117.2 53 43 60 30 $23 \times 20 \times 16$ 132.8 17.2 270.0 172.5					Width $Height W_1$ Pitch $Heigh$	Width Height M_1 Pitch M_2 Pitch M_3 Stat. M_4 Single* M_4 Dynamic M_4 Single* M_4 Dynamic M_4 Single* M_4 Dynamic M_4 Single* M_4 Double* M_4 Do

12.4 Miniature Type, MSC \ MSD Stainless Steel Series

A. Construction

B. Characteristics

MSC st ows with Gothic-arch groove and designed to contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Furthermore, ultra compact and low friction resistance design is suit to compact equipment. The lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

Four-way Equal Load

The two trains of balls are allocated to a Gothic-arch groove contact angle at 45°, thus each train of balls can takeup an equal rated load in all four directions.

Ultra Compact

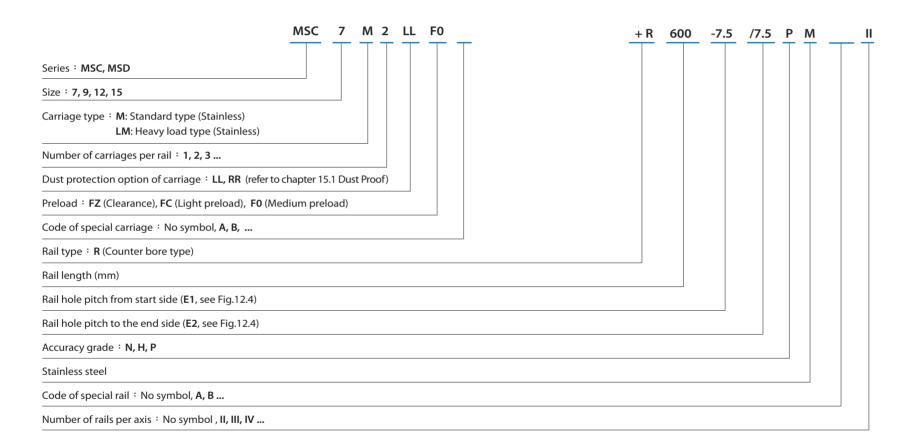
The ultra compact design is suit to the compact application with limited in space.

Ball Retainer

Design with ball retainer can prevent ball form dropping.

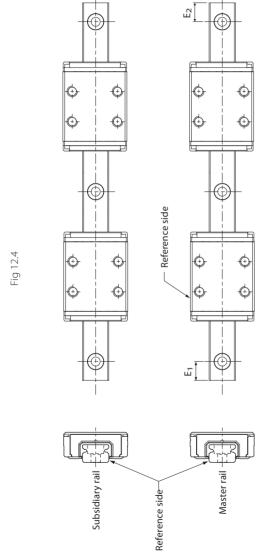
Smooth Movement with Low Noise

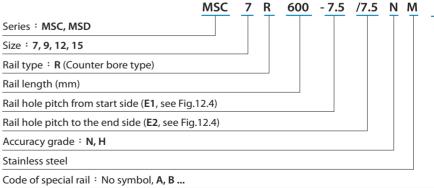
The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.


Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

C. Description of Specification


(1) Non-interchangeable Type



Series: MSC, MSD Size: 7, 9, 12, 15 Carriage type: M: Standard type (Stainless) LM: Heavy load type (Stainless) Dust protection option of carriage: LL, RR (refer to chapter 15.1 Dust Proof) Preload: FZ (Clearance) FC (Light preload), F0 (Medium preload) Accuracy grade: N, H Code of special carriage: No symbol, A, B, C, D... Code of Rail

(2) Interchangeable Type

Code of Carriage

F. Accuracy Grade

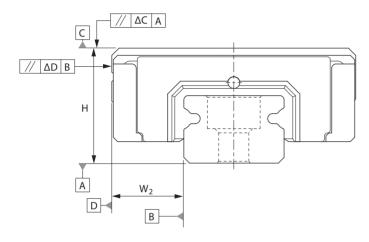


Table 1 Running Parallelism

Rail leng	jth (mm)	Runn	ing Parallelism Value	s(μ <i>m</i>)
Above	Or less	N	Н	Р
-	40	8	4	1
40	70	10	4	1
70	100	11	4	2
100	130	12	5	2
130	160	13	6	2
160	190	14	7	2
190	220	15	7	3
220	250	16	8	3
250	280	17	8	3

Rail leng	jth (mm)	Runn	ing Parallelism Value	s(μm)
Above	Or less	N	Н	Р
280	310	17	9	3
310	340	18	9	3
340	370	18	10	3
370	400	19	10	3
400	430	20	11	4
430	460	20	12	4
460	490	21	12	4
490	520	21	12	4
520	550	22	12	4
550	580	22	13	4
580	610	22	13	4
610	640	22	13	4
640	670	23	13	4
670	700	23	13	5
700	730	23	14	5
730	760	23	14	5
760	790	23	14	5
790	820	23	14	5
820	850	24	14	5
850	880	24	15	5
880	910	24	15	5
910	940	24	15	5
940	970	24	15	5
970	1000	25	16	5

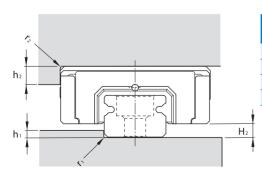
A Non-Interchangeable Type

			Accuracy Grade				
Model No.	ltem	Normal N	High H	Precision P			
	Tolerance for height H	±0.04	±0.02	±0.01			
	Height difference ΔH	0.03	0.015	0.007			
7 9	Tolerance for distance W₂	±0.04	±0.025	±0.015			
12 15	Difference in distance $W_2(\Delta W_2)$	0.02	0.01				
	Running parallelism of surface C with surface A	ΔC (see the table 1)					
	Running parallelism of surface D with surface B	ΔD (see the table 1)					

B Interchangeable Type

Model			Accurac	y Grade		
No.		ltem	Normal N	High H		
	Tole	rance for height H	±0.04	±0.02		
	Tolera	ance for distance W ₂	±0.04	±0.025		
7	Paired	Height difference (ΔH)	0.03	0.015		
9 12	single- rail	Difference in distance $W_2(\Delta W_2)$	0.03	0.02		
15		multiple-rail height difference (ΔH)	0.07	0.04		
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)		
		parallelism of surface D with surface B	ΔD (see th	ne table 1)		

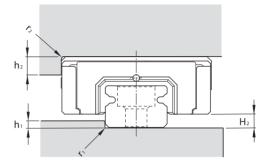
Unit: mm


G. Preload Grade

Series	Preload grade									
Jelles	Clearance(FZ)	Light preload (FC)	Medium preload (F0)							
MSC7										
MSC9	Clearance 4 100m	Clearance	0.01~0.02C							
MSC12	Clearance 4~10µm	2μm~0.01C	0.01~0.02C							
MSC15		,								
MSC7L										
MSC9L	Clearance 4 100m	Clearance	0.01~0.02C							
MSC12L	Clearance 4~10µm	2μm~0.01C	0.01~0.02C							
MSC15L		,								
MSD7										
MSD9	Classes 4 10	Clearance	0.01~0.02C							
MSD12	Clearance 4~10µm	2μm~0.01C	0.01~0.02C							
MSD15		,								
MSD7L										
MSD9L	Claaranca 4-10um	Clearance	0.01~0.02C							
MSD12L	Clearance 4~10µm	2μm~0.01C	0.01~0.02C							
MSD15L		,								

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

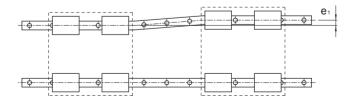
H. The Shoulder Height and Corner Radius for Installation


MSC series

Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
7	0.2	0.2	1.0	3	1.5
9	0.2	0.3	1.7	3	2.2
12	0.3	0.4	2.5	4	3
15	0.5	0.5	3.5	5	4

Unit: mm

MSD series


Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
7	0.2	0.2	1.5	3	2
9	0.2	0.3	3.2	3	3.7
12	0.3	0.4	3.5	4	4
15	0.5	0.5	3.5	5	4

I. Dimensional Tolerance of Mounting Surface

MSC \ MSD Series

The tolerances of parallelism between two axes are shown as below.

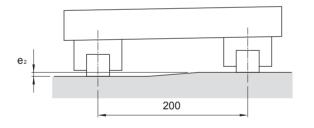
The parallel deviation between two axes (e₁)

Miniature Type, MSC ^ MSD Stainless Steel Series

n(Number of rail mounting holes) Е Р

 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- *n*: Nuber of mounting holes
- P: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge *(mm)*

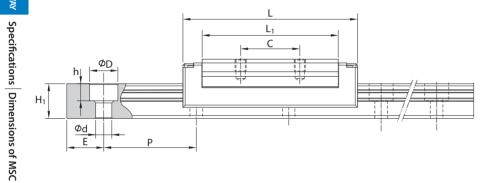

Unit: μm

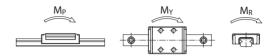
Mode	el No.	Standard Pitch (P)	Standard (E _{std.})	Standard (maximum) (L ₀ max.)
	7	15	5	1000
MSS	9	20	7.5	1000
MSC	MSC 12	25	10	1000 (2000)
	15		15	1000 (2000)
	7	30	10	1000 (2000)
MCD	9	30	10	1000 (2000)
MSD	12	40	15	1000 (2000)
	15	40	15	1000 (2000)

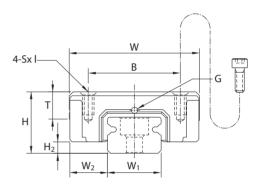
Unit: μm

Model No.	Preload Grade							
Model No.	FZ	FC	FO					
MSC 7 MSD7	12	3	3					
MSC 9 MSD9	15	4	3					
MSC 12 MSD12	20	9	5					
MSC 15 MSD15	25	10	6					

Level difference between two axes (e₂)



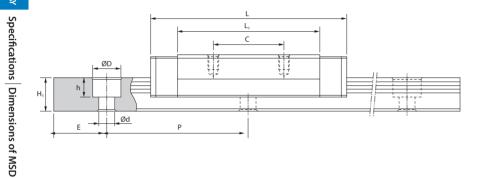

Unit: μm

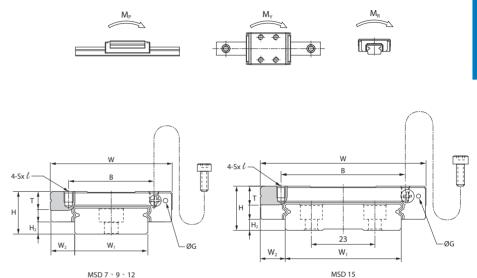

Model No.		Preload Grade							
Model No.	FZ	FC	F0						
MSC 7 MSD7	25	25	6						
MSC 9 MSD9	35	35	6						
MSC 12 MSD12	50	50	12						
MSC 15 MSD15	60	60	20						

Note: The permissible values in table are applicable when the span is 200mm wide.

Dimensions of MSC-M / MSC-LM

Unit: mm


		Exte	rnal dimer	nsion		Carriage dimension						
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	S×ℓ	L,	Т	G	
MSC 7 M MSC 7 LM	8	17	23.6 33.1	5	1.5	12	8 13	M2×2.5	18.4 27.9	3.5	Ø0.8	
MSC 9 M MSC 9 LM	10	20	31.1 41.3	5.5	2.2	15	10 16	M3×3	25.8 36	4.5	Ø1	
MSC 12 M MSC 12 LM	13	27	34.6 47.6	7.5	3	20	15 20	M3×3.6	28 41	6	Ø1.5	
MSC 15 M MSC 15 LM	16	32	43.5 60.5	8.5	4	25	20 25	M3×4.2	36.1 53.1	7	G-M3	


Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

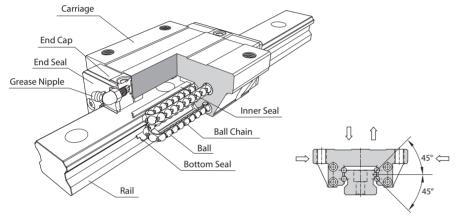
		Rail dimension				Basic load	Basic load rating Static moment ra			t rating		Weight		
Model No.	Width W ₁	Height H ₁	Pitch P	E std.	D×h×d	Dynamic C kN	C _o	N	M _p I-m Double [*]	١	M _Y I-m Double [*]	M _R N-m	Carriage g	Rail kg/m
MSC 7 M MSC 7 LM	7 0 -0.05	4.7	15	5	4.2×2.3×2.4	0.94 1.36	1.28 2.24	2.6 7.4	15.33 37.92	2.6 7.4	15.33 37.92	4.7 8.3	13 18	0.22
MSC 9 M MSC 9 LM	9 0 -0.05	5.5	20	7.5	6×3.3×3.5	1.71 2.52	2.24 3.92	6.1 17.4	33.46 84.63	6.1 17.4	33.46 84.63	10.8 18.8	29 39	0.33
MSC 12 M MSC 12 LM	12 _{-0.05}	7.5	25	10	6×4.5×3.5	2.62 3.77			63.96 141.52		63.96 141.52		40 60	0.63
MSC 15 M MSC 15 LM	15 0 -0.05	9.5	40	15	6×4.5×3.5	4.52 6.47	5.70 9.26				132.17 295.87		71 100	1.02

Dimensions of MSD-M / MSD-LM

Jr		

		Exte	rnal dimer	nsion		Carriage dimension					
Model No.	Height H	Width W	Length L	W_2	H ₂	В	C	S×ℓ	L ₁	Т	G
MSD 7 M MSD 7 LM	9	25	30.8 40.5	5.5	2	19	10 19	M3×3	20.6 30.3	3.9	Ø1.5
MSD 9 M MSD 9 LM	12	30	38.7 50.7	6	3.7	21 23	12 24	M3×3	27.1 39.1	5	Ø1.5
MSD 12 M MSD 12 LM	14	40	44.5 60	8	4	28	15 28	M3×4	31.0 46.5	6	Ø1.5
MSD 15 M MSD 15 LM	16	60	55.5 74.5	9	4	45	20 35	M4×4.5	40.3 59.3	7	Ø1.5

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C100 for 100 km is C=1.26 x C100.


Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

ш	r	s i	+	•	r	n
U	н	ш	ΙL		L	ш

		Rail	dimen:	sion		Basic load rating			Static	nomen	t rating		Weight	
Model No.	Width	Height		Е	D×h×d	Dynamic C	Static C _o		И _Р -m		Λ _Y -m	M _R	Carriage	Rail
	W ₁	Н,	Р	std.	DAIIAG	kN			Double*			N-m	g	kg/m
MSD 7 M MSD 7 LM	14 _{-0.05}	5.2	30	10	6×3.2×3.5	1.51 2.04	2.46 3.79	6.6 17.5	39.0 84.0	6.6 17.5	39.0 84.0	17.7 27.3	23 31	0.55
MSD 9 M MSD 9 LM	18 _{-0.05}	7	30	10	6×4.5×3.5	2.79 3.64	4.37 6.39	15.6 33.8	90.3 175.2	15.6 33.8	90.3 175.2	40.7 59.5	41 57	0.96
MSD 12 M MSD 12 LM	24 _{-0.05}	8.5	40	15	8×4.5×4.5	4.05 5.28	6.20 9.06		151.5 294.4				70 101	1.55
MSD 15 M MSD 15 LM	42 0 -0.05	9.5	40	15	8×4.5×4.5	7.08 9.40	10.18 15.26		301.4 616.1		301.4 616.1		126 150	2.99

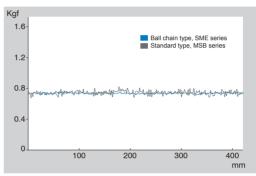
12.5 Ball Chain Type, SME Series

A. Construction

B. Characteristics

The ball chain type linear guideway, SME series, equip with the patent of ball chain design can make the movement smooth and stability, especially suit for the requests of high speed, high accuracy.

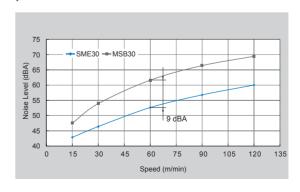
The Optimization Design of Four Directional Load


Through the structure stress analysis, SME series have four trains of balls are designed to a circular contact angle of 45° and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

Self Alignment Capability

The self adjustment is performed spontaneously as the design of face-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

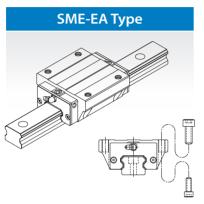
Ball Chain Design, Smooth Movement


The concise and smooth design of circulating system with strengthened synthetic resin accessories and cooperating with the ball chain, these can avoid interference between balls and make the balls more stability during passing in and out the load district. Besides, the ball chain can keep the ball move in a line and improve the movement most smooth substantially.

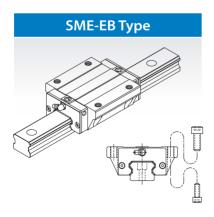
Rolling resistance test

Low Noise, Good Lubricant Effect

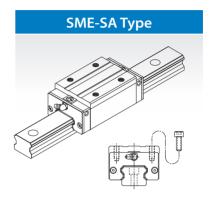
The ball chain design avoids interference between balls, lowers the operating noise, and can keep the lubricant between the balls and ball chain effectively. Moreover, improve the movement smooth and service life of the whole, can meet high accuracy, high reliability and smooth and stability.

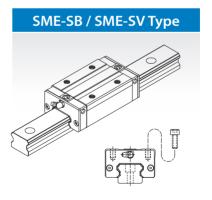


Noise level comparison test

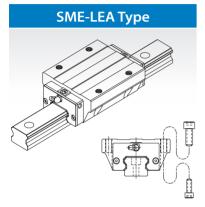

XPMI

C. Carriage Type


Heavy Load


This type offers the installation either from top or bottom side of carriage.

All dimensions are same as SME-EA except the mounting hole dimensions of carriage are different and the height is lower, which do not change the basic loading rating.



Square type with smaller width and can be installed from top side of carriage.

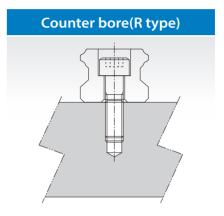
All dimensions are same as SME-SA except the mounting hole dimensions of carriage are different and the height is lower, which do not change the basic loading rating.

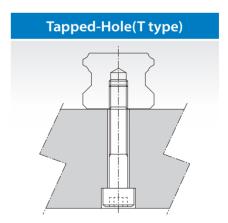
Ultra Heavy Load

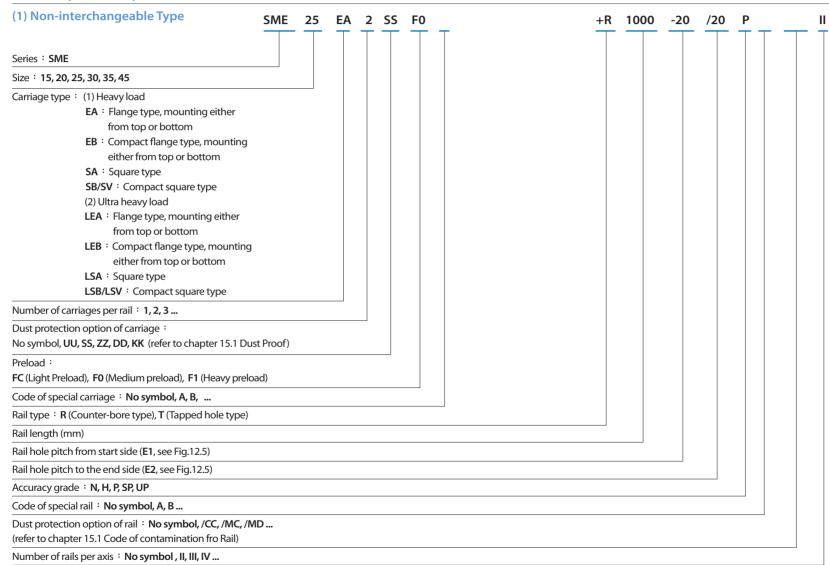

All dimensions are same as SME-EA except the length is longer, which makes it more rigid.

SME-LEB Type

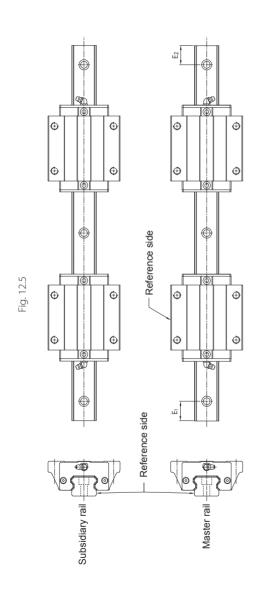
All dimensions are same as SME-EB except the length is longer, which makes it more rigid.

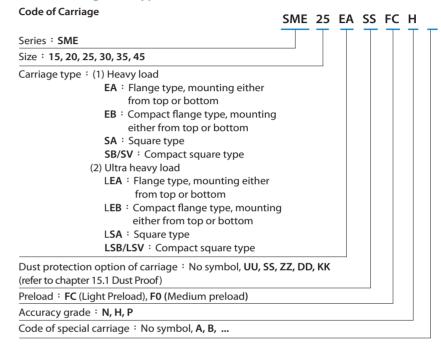

SME-LSA Type

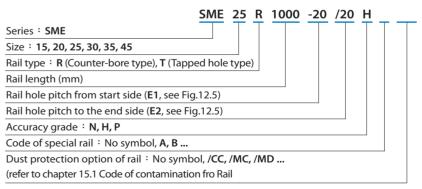

All dimensions are same as SME-SA except the length is longer, which makes it more rigid.

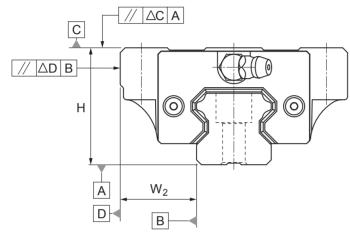

All dimensions are same as SME-SB and SME-SV except the length is longer, which makes it more rigid.

D. Rail Type




E. Description of Specification


 $\times PMI$


(2) Interchangeable Type

Code of Rail

F. Accuracy Grade

Table 1 Running Parallelism

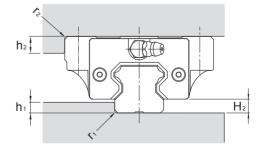
Rail leng	gth (mm)		Running	Parallelism Va	lues(μm)	
Above	Or less	N	Н	Р	SP	UP
0	315	9	6	3	2	1.5
315	400	11	8	4	2	1.5
400	500	13	9	5	2	1.5
500	630	16	11	6	2.5	1.5
630	800	18	12	7	3	2
800	1000	20	14	8	4	2
1000	1250	22	16	10	5	2.5
1250	1600	25	18	11	6	3
1600	2000	28	20	13	7	3.5
2000	2500	30	22	15	8	4
2500	3000	32	24	16	9	4.5
3000	3500	33	25	17	11	5
3500	4000	34	26	18	12	6

A Non-Interchangeable Type

			Ac	curacy Gra	de			
Model No.	ltem	Normal N	High H	Precision P	Super Precision SP	Ulitra Precision UP		
	Tolerance for height H	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008		
	Height difference ΔH	0.02	0.01	0.006	0.004	0.003		
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008		
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006	0.004	0.003		
	Running parallelism of surface C with surface A		ΔC	(see the tabl	e 1)			
	Running parallelism of surface D with surface B		ΔD	(see the tabl	e 1)			
	Tolerance for height H	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01		
	Height difference ΔH	0.02	0.015	0.007	0.005	0.003		
25 30	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01		
	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007	0.005	0.003		
35	Running parallelism of surface C with surface A	ΔC (see the table 1)						
	Running parallelism of surface D with surface B		ΔD	(see the tabl	e 1)			
	Tolerance for height H	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02		
	Height difference ΔH	0.03	0.015	0.007	0.005	0.003		
45	Tolerance for distance W ₂	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02		
45	Difference in distance $W_2(\Delta W_2)$	0.03	0.02	0.01	0.007	0.005		
	Running parallelism of surface C with surface A	ΔC (see the table 1)						
	Running parallelism of surface D with surface B		ΔD	(see the tabl	e 1)			

B Interchangeable Type

Model			Accuracy Grade						
No.	ltem	Normal N	High H	Precision P					
	Tolerance for height H	±0.1	±0.03	0 -0.03					
	Height difference ΔH	0.02	0.01	0.006					
15	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03					
20	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006					
	Running parallelism of surface C with surface A		ΔC (see the table 1)						
	Running parallelism of surface D with surface B	ΔD (see the table 1)							
	Tolerance for height H	±0.1	±0.04	0 -0.04					
	Height difference ΔH	0.02	0.015	0.007					
25	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04					
30	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007					
35	Running parallelism of surface C with surface A	ΔC (see the table 1)							
	Running parallelism of surface D with surface B		ΔD (see the table 1)						
	Tolerance for height H	±0.1	±0.05	0 -0.05					
	Height difference ΔH	0.03	0.015	0.007					
45	Tolerance for distance W ₂	±0.1	±0.05	0 -0.05					
45	Difference in distance $W_2(\Delta W_2)$	0.03	0.02	0.01					
	Running parallelism of surface C with surface A		ΔC (see the table 1)						
	Running parallelism of surface D with surface B		ΔD (see the table 1)						

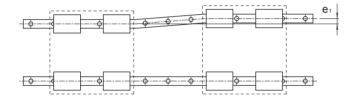

G. Preload Grade

Control		Preload grade	ad grade			
Series	Light preload (FC)	Medium preload (F0)	Heavy preload (F1)			
SME15			-			
SME20						
SME25	0.01~0.03C	0.04~0.06C				
SME30	0.0130.030	0.04-90.000	0.07~0.09C			
SME35						
SME45						
SME15L						
SME20L						
SME25L	0.01~0.03C	0.04~0.06C	0.07~0.09C			
SME30L	0.01~0.03C	0.04~0.06C	0.07~0.09C			
SME35L						
SME45L						

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

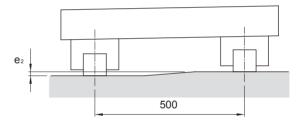
SME series



Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
15	0.5	0.5	2.5	5	3.5
20	0.5	0.5	3.5	5	4.7
25	1	1	5	6	5.8
30	1	1	5	7	7.5
35	1	1	6	8	8
45	1	1	8	8	10

I. Dimensional Tolerance of Mounting Surface

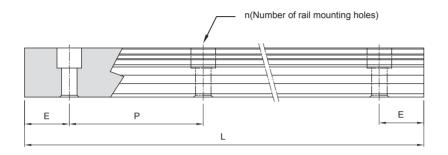
SME with the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Marila I Nia	Preload Grade						
Model No.	FC	F0	F1				
15	25	18	-				
20	25	20	18				
25	30	22	20				
30	40	30	27				
35	50	35	30				
45	60	40	35				

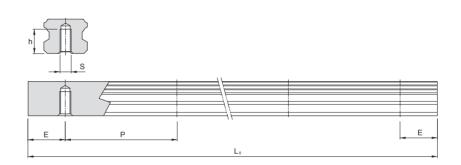
Level difference between two axes (e₂)


Unit: μm

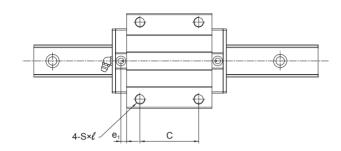
Model No.	Preload Grade						
Model No.	FC	F0	F1				
15	130	85	-				
20	130	85	50				
25	130	85	70				
30	170	110	90				
35	210	150	120				
45	250	170	140				

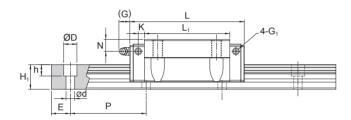
Note: The permissible values in table are applicable when the span is 500mm wide.

J. Rail Maximum Length and Standrad


 $L=(n-1)\times P+2\times E$

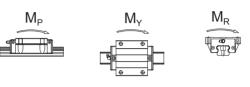
- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- P: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge (*mm*)

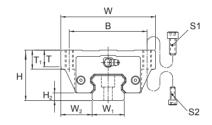

Unit: mm


Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L₀ max.)
SME 15	60	20	5	4000
SME 20	60	20	6	4000
SME 25	60	20	7	4000
SME 30	80	20	8	4000
SME 35	80	20	8	4000
SME 45	105	22.5	11	4000

K. Tapped-hole Rail Dimensions

Rail Model	S	h(mm)
SME 15 T	M5	8
SME 20 T	M6	10
SME 25 T	M6	12
SME 30 T	M8	15
SME 35 T	M8	17
SME 45 T	M12	24

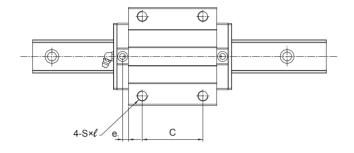


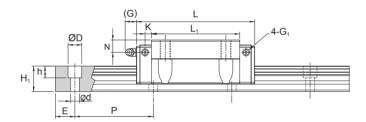

11	mit.	m	

		Extern	al dimer	sion					(Carria	ge di	mens	ion				
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	C	S×ℓ	L,	Т	T,	N	G	K	e ₁	G ₁	Grease Nipple
SME 15 EA SME 15 LEA	24	47	64.4 79.4	16	3.5	38	30	M5×8	48 63	5.5	8	5	5.5	2.7	-	M4	G-M4
SME 20 EA SME 20 LEA	30	63	78.5 97.5	21.5	4.7	53	40	M6×10	58.3 77.3	7	10	8	12	3.7	-	M4	G-M6
SME 25 EA SME 25 LEA	36	70	92 109	23.5	5.8	57	45	M8×13	71 88	7	13	10	12	4.7	-	M4	G-M6
SME 30 EA SME 30 LEA	42	90	107.6 132.6	31	7.5	72	52	M10×15	80 105	12	15	8	12	4.5	5.4	M6	G-M6
SME 35 EA SME 35 LEA	48	100	120.6 150.6	33	8	82	62	M10×15	90 120	12	15	8	12	5.4	6	M6	G-M6
SME 45 EA SME 45 LEA	60	120	140 174.5	37.5	10	100	80	M12×18	106 140.5	12	18	10	13.5	8.5	6.1	M6	G-PT 1/8

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

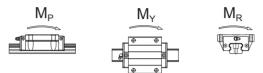


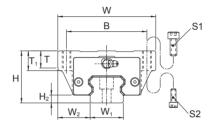

Model No.	Bolt	Size
Model No.	S ₁	S ₂
SME 15	M5	M4
SME 20	M6	M5
SME 25	M8	M6
SME 30	M10	M8
SME 35	M10	M8
SME 45	M12	M10

		R	ail din	nensio	n	Basic load	l rating		Static n	noment	rating		Weig	ght
Model No.		Height		Е	D×h×d	Dynamic C	Static C _o		Λ _P I-m		Λ _γ I-m		Carriage	
	W ₁	H,	Р	std.		kN	kN	Single*	Double*	Single*	Double*	kN-m	kg	kg/m
SME 15 EA SME 15 LEA	15	13	60	20	7.5×5.8×4.5	12.5 15.4	20.2 27.5	0.14 0.25	0.69 1.15	0.14 0.25	0.69 1.15	0.16 0.21	0.22 0.29	1.4
SME 20 EA SME 20 LEA	20	15.5	60	20	9.5×8.5×6	20.4 25.3	32.1 43.6	0.27 0.49	1.34 2.24	0.27 0.49	1.34 2.24	0.33 0.44	0.42 0.62	2.3
SME 25 EA SME 25 LEA	23	18	60	20	11×9×7	28.3 33.0	44.3 56.1	0.45 0.71	2.14 3.20	0.45 0.71	2.14 3.20	0.52 0.66	0.67 0.89	3.2
SME 30 EA SME 30 LEA	28	23	80	20	14×12×9	39.4 47.0	59.5 76.5	0.68 1.11	3.37 5.32	0.68 1.11	3.37 5.32	0.83 1.07	1.18 154	4.5
SME 35 EA SME 35 LEA	34	26	80	20	14×12×9	54.7 67.6	81.0 109.9	1.07 1.92	5.25 8.75	1.07 1.92	5.25 8.75	1.41 1.91	1.74 2.28	6.2
SME 45 EA SME 45 LEA	45	32	105	22.5	20×17×14	72.7 90.0	105.8 143.6	1.61 2.88	7.82 13.08	1.61 2.88	7.82 13.08	2.41 3.27	3.22 4.21	10.5

B140

Dimensions of SME-EB / SME-LEB

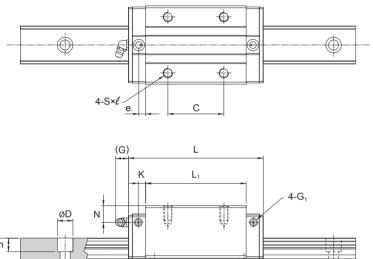


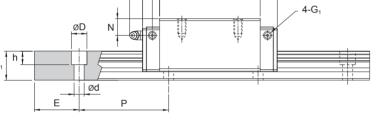

nit:	

		Extern	al dimer	nsion			Carriage dimension										
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	C	S×ℓ	L ₁	Т	Т,	N	G	K	e ₁	G ₁	Grease Nipple
SME 15 EB SME 15 LEB								M5×8									
SME 20 EB SME 20 LEB	28	59	78.5 97.5	19.5	4.7	49	32 45	M6×8	58.3 77.3	7.0	8	6.0	12	3.7	-	M4	G-M6
SME 25 EB SME 25 LEB	33	73	92 109	25	5.8	60	35 50	M8×10	71 88	7.0	10	7.0	12	4.7	-	M4	G-M6

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is C=1.26 x C_{100} .

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

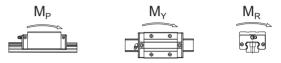


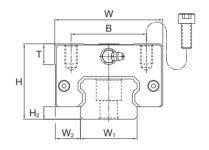


Model No.	Bolt	Size
wodei No.	S ₁	S ₂
SME 15	M5	M4
SME 20	M6	M5
SME 25	M8	M6

		Ra	ail dim	ensid	on	Basic load	drating		Static r	noment	rating		Weig	ht
Model No.	Width	Height	Ditch	Е		Dynamic	Static	N	Λ _P	M _Y		M _R	Carriage	Rail
Model No.	W.	H,	P		$D \times h \times d$	C	C _o	kN	-m	kN-m		kN-m		
	VV 1	П	Р	std.		kN	kN	Single*	Double*	Single*	Double*	KIN-M	kg	kg/m
SME 15 EB	15	13	60	20	7.5×5.8×4.5	12.5	20.2	0.14	0.69	0.14	0.69	0.16	0.21	1 /
SME 15 LEB	15	13	60	20	7.5×5.6×4.5	15.4	27.5	0.25	1.15	0.25	1.15	0.21	0.27	1.4
SME 20 EB	20	15.5	60	20	9.5×8.5×6	20.4	32.1	0.27	1.34	0.27	1.34	0.33	0.39	2.3
SME 20 LEB	20	13.3	00	20	9.5×6.5×6	25.3	43.6	0.49	2.24	0.49	2.24	0.44	0.55	2.5
SME 25 EB	23	18	60	20	11×9×7	28.3	44.3	0.45	2.14	0.45	2.14	0.52	0.42	3.2
SME 25 LEB	23	18	60	20	11/9//	33.0	56.1	0.71	3.20	0.71	3.20	0.66	0.65	5.2

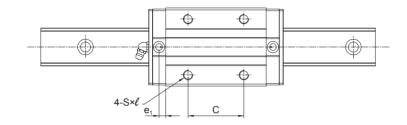
Dimensions of SME-SA / SME-LSA

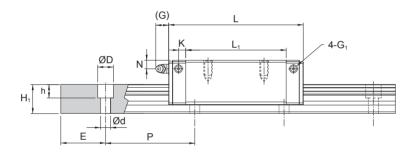



	mm

		Externa	al dimen	sion					C	arriaç	ge din	nensio	n			
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	C	S×ℓ	L ₁	Т	N	G	K	e ₁	G ₁	Grease Nipple
SME 15 SA SME 15 LSA	28	34	64.4 79.4	9.5	3.5	26	26	M4×7.5	48 63	6	9	5.5	2.7	-	M4	G-M4
SME 20 SA SME 20 LSA	30	44	78.5 97.5	12	4.7	32	36 50	M5×7	58.3 77.3	6	8	12	3.7	-	M4	G-M6
SME 25 SA SME 25 LSA	40	48	92 109	12.5	5.8	35	35 50	M6×12	71 88	8	14	12	4.7	-	M4	G-M6
SME 30 SA SME 30 LSA	45	60	107.6 132.6	16	7.5	40	40 60	M8×12	80 105	8	11	12	4.5	5.4	M6	G-M6
SME 35 SA SME 35 LSA	55	70	120.6 150.6	18	8	50	50 72	M8×14	90 120	11	15	12	5.4	6	M6	G-M6
SME 45 SA SME 45 LSA	70	86	140 174.5	20.5	10	60	60 80	M10×20	106 140.5	16	20	13.5	8.5	6.1	M6	G-PT 1/8

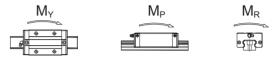
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

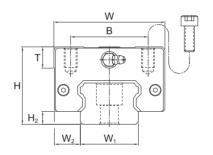

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



		F	Rail din	nensio	n	Basic load	l rating		Static n		Weight			
Model No.	Width W ₁	Height H ₁	Pitch P	E std.	D×h×d	Dynamic C kN	Static C _o kN	kN	Λ _P I-m Double [*]	kN	Λ _Υ I-m Double [*]	M _R kN-m	Carriage kg	Rail kg/m
SME 15 SA SME 15 LSA	15	13	60	20	7.5×5.8×4.5	12.5 15.4	20.2 27.5	0.14 0.25	0.69 1.15	0.14 0.25	0.69 1.15	0.16 0.21	0.22 0.25	1.4
SME 20 SA SME 20 LSA	20	15.5	60	20	9.5×8.5×6	20.4 25.3	32.1 43.6	0.27 0.49	1.34 2.24	0.27 0.49	1.34 2.24	0.33 0.44	0.30 0.39	2.3
SME 25 SA SME 25 LSA	23	18	60	20	11×9×7	28.3 33.0	44.3 56.1	0.45 0.71	2.14 3.20	0.45 0.71	2.14 3.20	0.52 0.66	0.56 0.73	3.2
SME 30 SA SME 30 LSA	28	23	80	20	14×12×9	39.4 47.0	59.5 76.5	0.68 1.11	3.37 5.32	0.68 1.11	3.37 5.32	0.83 1.07	0.93 1.21	4.5
SME 35 SA SME 35 LSA	34	26	80	20	14×12×9	54.7 67.6	81.0 109.9	1.07 1.92	5.25 8.75	1.07 1.92	5.25 8.75	1.41 1.91	1.57 2.05	6.2
SME 45 SA SME 45 LSA	45	32	105	22.5	20×17×14	72.7 90.0	105.8 143.6	1.61 2.88	7.82 13.08	1.61 2.88	7.82 13.08	2.41 3.27	3.06 4.00	10.5

Dimensions of SME-SB / SME-LSB

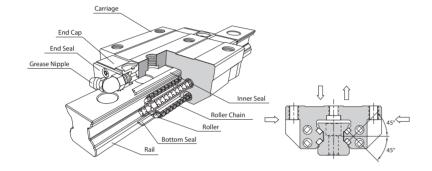



	mm
- 0.	 1111111

	External dimension						Carriage dimension									
Model No.	Height H	Width W	Length L	W ₂	H₂	В	C	S×ℓ	L ₁	Т	N	G	K	e ₁	G ₁	Grease Nipple
SME 15 SB SME 15 LSB	24	34	64.4 79.4	9.5	3.5	26	26 34	M4×5	48 63	6	5	5.5	2.7	-	M4	G-M4
SME 20 SB SME 20 LSB	28	42	78.5 97.5	11	4.7	32	32 45	M5×5.5	58.3 77.3	6	6	12	3.7	-	M4	G-M6
SME 25 SB SME 25 LSB	33	48	92 109	12.5	5.8	35	35 50	M6×7	71 88	8	7	12	4.7	-	M4	G-M6
SME 25 SV SME 25 LSV	36	48	92 109	12.5	5.8	35	35 50	M6×9	71 88	8	10	12	4.7	-	M4	G-M6
SME 30 SB SME 30 LSB	42	60	107.6 132.6	16	7.5	40	40 60	M8×10	80 105	8	8	12	4.5	5.4	M6	G-M6
SME 35 SB SME 35 LSB	48	70	120.6 150.6	18	8	50	50 72	M8×11	90 120	11	8	12	5.4	6	M6	G-M6
SME 45 SB SME 45 LSB	60	86	140 174.5	20.5	10	60	60 80	M10×16	106 140.5	16	10	13.5	8.5	6.1	M6	G-PT 1/8

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

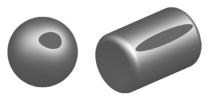
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



		ı	Rail din	nensio	n	Basic load	d rating		Static n	Weight				
Model No.	Width Height W ₁ H ₁	Height	Pitch	Е	D×h×d	Dynamic C	Static C	M _P kN-m		M _Y kN-m		M_R	Carriage	Rail
		P 9	std.	DAIIAU	kN	kN					kN-m	kg	kg/m	
SME 15 SB SME 15 LSB	15	13	60	20	7.5×5.8×4.5	12.5 15.4	20.2 27.5	0.14 0.25	0.69 1.15	0.14 0.25	0.69 1.15	0.16 0.21	0.19 0.22	1.4
SME 20 SB SME 20 LSB	20	15.5	60	20	9.5×8.5×6	20.4 25.3	32.1 43.6	0.27 0.49	1.34 2.24	0.27 0.49	1.34 2.24	0.33 0.44	0.26 0.35	2.3
SME 25 SB SME 25 LSB	23	18	60	20	11×9×7	28.3 33.0	44.3 56.1	0.45 0.71	2.14 3.20	0.45 0.71	2.14 3.20	0.52 0.66	0.31 0.49	3.2
SME 25 SV SME 25 LSV	23	18	60	20	11×9×7	28.3 33.0	44.3 56.1	0.45 0.71	2.14 3.20	0.45 0.71	2.14 3.20	0.52 0.66	0.44 0.62	3.2
SME 30 SB SME 30 LSB	28	23	80	20	14×12×9	39.4 47.0	59.5 76.5	0.68 1.11	3.37 5.32	0.68 1.11	3.37 5.32	0.83 1.07	0.85 1.10	4.5
SME 35 SB SME 35 LSB	34	26	80	20	14×12×9	54.7 67.6	81.0 109.9	1.07 1.92	5.25 8.75	1.07 1.92	5.25 8.75	1.41 1.91	1.22 1.61	6.2
SME 45 SB SME 45 LSB	45	32	105	22.5	20×17×14	72.7 90.0	105.8 143.6	1.61 2.88	7.82 13.08	1.61 2.88	7.82 13.08	2.41 3.27	2.86 3.57	10.5

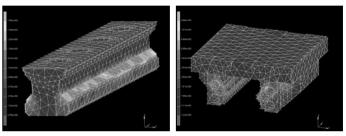
12.6 Roller Chain Type, SMR Series

A. Construction



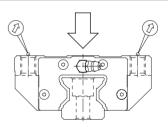
B. Characteristics

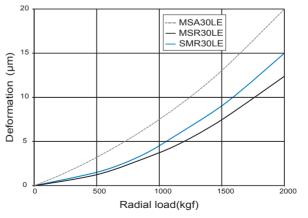
The roller chain type linear guideway, SMR series, equip with rollers instead of the ball, and therefore the SMR series can provide higher rigidity and loading than the normal type with the same size. Besides, the patent of roller chain design can make the movement smooth and stability, especially suit for the requests of high accuracy, heavy load and high rigidity.


Ultra Heavy Load

SMR linear guideway through rollers have a line contact with carriage and rail. Relative to the general type linear guideway through balls have a point contact; the SMR type linear guideway can offer lower elastic deformation while bearing the same load. Base on the rollers have the same outer diameter with balls, the roller can bear the heavier load. The excellent characteristics of high rigidity and ultra heavy load can suitable for the high accuracy application that heavy load is processed even more.

The Optimization Design of Four Directional Load


Through the structure stress analysis of finite element method, SMR series have four trains of rollers are designed to a contact angle of 45° and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.



Ultra High Rigidity

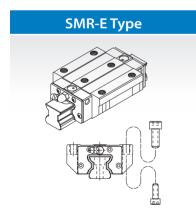
Test data of rigidity

Test samples: Ball type MSA30LE with preload F1
Full roller type MSR30LE with preload F1
Roller chain type SMR30LE with preload F1

XPMI

Roller Chain Design, Smooth Movement

The concise and smooth design of circulating system with strengthened synthetic resin accessories and cooperating with the roller chain, these can avoid interference between rollers and make the rollers more stability during passing in and out the load district. Besides, the roller chain can keep the roller move in a line and improve the movement most smooth substantially.

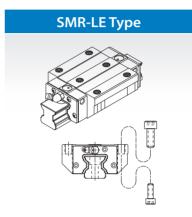


Low Noise, Good Lubricant Effect

The roller chain design avoids interference between rollers, lowers the operating noise, and can keep the lubricant between the rollers and roller chain effectively. Moreover, improve the movement smooth and service life of the whole, can meet high accuracy, high reliability and smooth and stability.

C. Carriage Type

Heavy Load

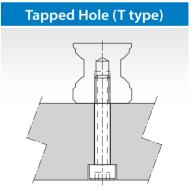


This type offers the installation either from top or bottom side of carriage.

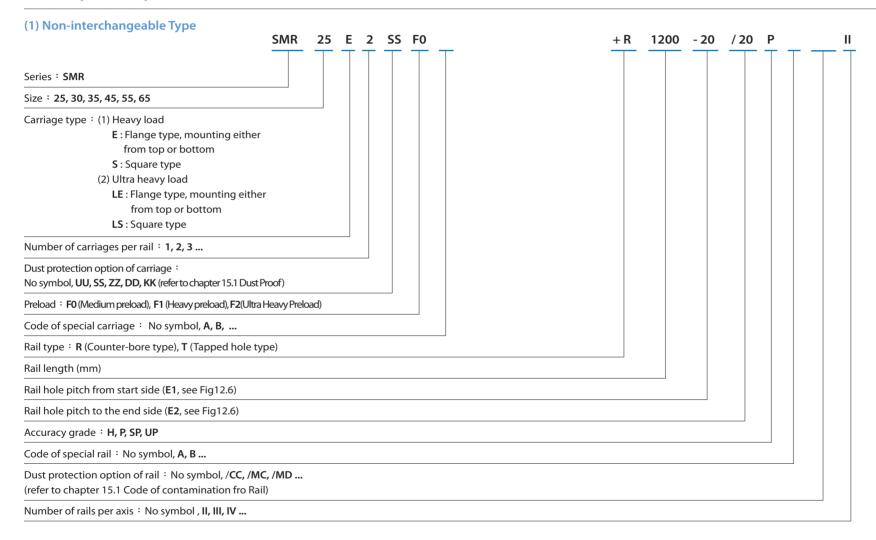
SMR-S Type

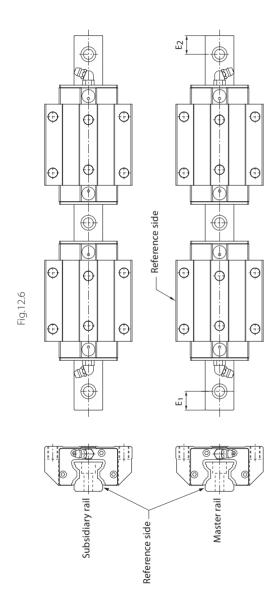
Square type with smaller width and can be installed from top side of carriage.

Ultra Heavy Load

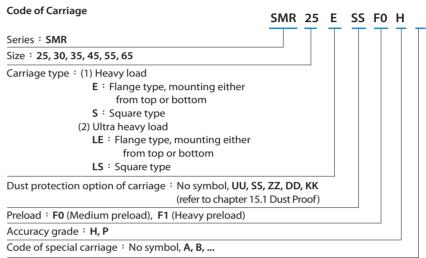

All dimensions are same as SMR-E except the length is longer, which makes it more rigid.

SMR-LS Type

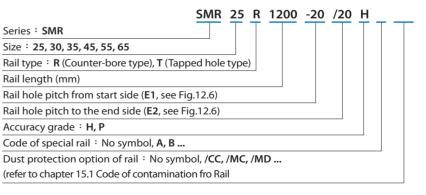

All dimensions are same as SMR-S except the length is longer, which makes it more rigid.


D. Rail Type

Counter bore (R type)



E. Description of Specification



(2) Interchangeable Type

Code of Rail

F. Accuracy Grade

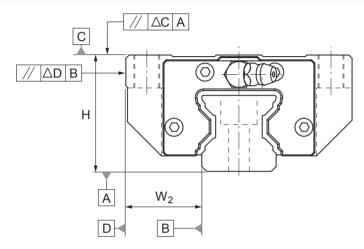


Table 1 Running Parallelism

Rail leng	gth (mm)	Running Parallelism Values(μm)			
Above	Or less	Н	Р	SP	UP
0	315	6	3	2	1.5
315	400	8	4	2	1.5
400	500	9	5	2	1.5
500	630	11	6	2.5	1.5
630	800	12	7	3	2
800	1000	14	8	4	2
1000	1250	16	10	5	2.5
1250	1600	18	11	6	3
1600	2000	20	13	7	3.5
2000	2500	22	15	8	4
2500	3000	24	16	9	4.5
3000	3500	25	17	11	5
3500	4000	26	18	12	6

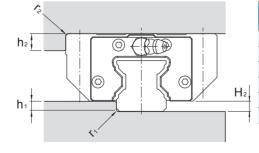
A Non-Interchangeable Type

			Accurac	y Grade		
Model No.	ltem	High H	Precision P	Super Precision SP	Ulitra Precision UP	
	Tolerance for height H	±0.04	0 -0.04	0 -0.02	0 -0.01	
25	Height difference ΔH	0.015	0.007	0.005	0.003	
30	Tolerance for distance W ₂	±0.04	0 -0.04	0 -0.02	0 -0.01	
35	Difference in distance $W_2(\Delta W_2)$	0.015	0.007	0.005	0.003	
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)		
	Running parallelism of surface D with surface B		ΔD (see th	ne table 1)		
45 55	Tolerance for height H	±0.05 0 -0.05		0 -0.03	0 -0.02	
	Height difference ΔH	0.015	0.007	0.005	0.003	
	Tolerance for distance W ₂	±0.05	0 -0.05	0 -0.03	0 -0.02	
33	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.007	0.005	
	Running parallelism of surface C with surface A	ΔC (see the table 1)				
	Running parallelism of surface D with surface B		ΔD (see th	ne table 1)		
	Tolerance for height H	±0.07	0 -0.07	0 -0.05	0 -0.03	
	Height difference ΔH	0.02	0.01	0.007	0.005	
65	Tolerance for distance W ₂	±0.07	0 -0.07	0 -0.05	0 -0.03	
	Difference in distance $W_2(\Delta W_2)$	0.025	0.015	0.01	0.007	
	Running parallelism of surface C with surface A		ΔC (see th	ne table 1)		
	Running parallelism of surface D with surface B	ΔD (see the table 1)				

※*PMI* B155

B Interchangeable Type

Model		Accurac	y Grade
No.	ltem	High H	Precision P
	Tolerance for height H	±0.04	0 -0.04
25	Height difference ΔH	0.015	0.007
30	Tolerance for distance W ₂	±0.04	0 -0.04
35	Difference in distance $W_2(\Delta W_2)$	0.015	0.007
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)
	Tolerance for height H	±0.05	0 -0.05
	Height difference ΔH	0.015	0.007
45 55	Tolerance for distance W ₂	±0.05	0 -0.05
33	Difference in distance $W_2(\Delta W_2)$	0.02	0.01
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)
	Tolerance for height H	±0.07	0 -0.07
	Height difference ΔH	0.02	0.01
65	Tolerance for distance W ₂	±0.07	0 -0.07
	Difference in distance $W_2(\Delta W_2)$	0.025	0.015
	Running parallelism of surface C with surface A	ΔC (see th	e table 1)
	Running parallelism of surface D with surface B	ΔD (see th	ne table 1)

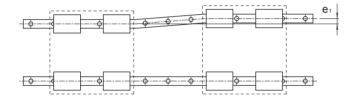

G. Preload Grade

	Preload grade					
Series	Medium preload (F0)	Heavy preload (F1)	Ultra Heavy Preload (F2)			
SMR25						
SMR30						
SMR35	0.04~0.06C	0.07~0.09C	0.12~0.14C			
SMR45						
SMR55						
SMR25L						
SMR30L						
SMR35L	0.04~0.06C	0.07~0.09C	0.12~0.14C			
SMR45L	0.04~0.06C	0.07~0.09C	0.12~0.14C			
SMR55L						
SMR65L						

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

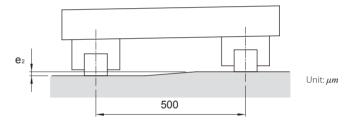
SME series



Model No.	r ₁ (max.)	r ₂ (max.)	h,	h ₂	H ₂
25	0.5	0.5	4	8	4.8
30	0.5	0.5	5	8	6
35	1	1	5.5	10	6.5
45	1	1	6	12	8.1
55	1	1	8	15	10
65	1	1	10	15	12

I. Dimensional Tolerance of Mounting Surface

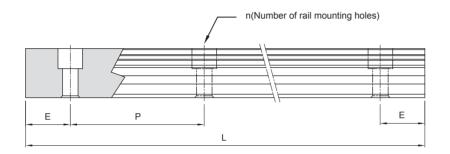
SMR with the high rigidity, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Model No.	Preload Grade				
	FO	F1	F2		
25	9	7	5		
30	11	8	6		
35	14	10	7		
45	17	13	9		
55	21	14	11		
65	27	18	14		

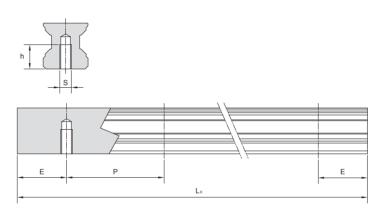
Level difference between two axes (e₂)


Unit: μm

Model No.		Preload Grade				
Model No.	F0	F1	F2			
25						
30	150					
35		105	55			
45		105	33			
55						
65						

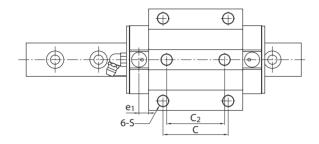
Note: The permissible values in table are applicable when the span is 500mm wide.

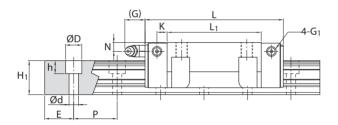
J. Rail Maximum Length and Standrad


 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- *P*: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge (*mm*)

Unit: mm


Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L₀ max.)
SMR 25	30	20	7	4000
SMR 30	40	20	8	4000
SMR 35	40	20	8	4000
SMR 45	52.5	22.5	11	4000
SMR 55	60	30	13	4000
SMR 65	75	35	14	4000


K. Tapped-hole Rail Dimensions

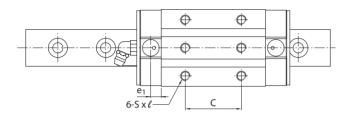
Rail Model	S	h(mm)
SMR 25 T	M6	12
SMR 30T	M8	15
SMR 35T	M8	17
SMR 45 T	M12	24
SMR 55T	M14	24
SMR 65T	M20	30

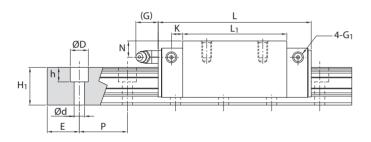
Dimensions of SMR-E / SMR-LE

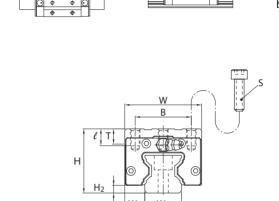
ļ	W B	S ₁
$H = \begin{bmatrix} T_1 & T_2 & T_1 & \vdots \\ & & & \vdots \\ & & & \vdots \\ & & & & \vdots \\ & & & &$	W ₂ W ₁	

Model No.	Bolt Size		
Model No.	S ₁	S ₂	
SMR 25	M8	M6	
SMR 30	M10	M8	
SMR 35	M10	M8	
SMR 45	M12	M10	
SMR 55	M14	M12	
SMR 65	M16	M14	

U	n	IT:	n	ור	Π


		Ra	ail dime	ensior	1	Basic load	drating		Static r	noment	rating		Weig	ht
Model No.	Width Height I		_		D×h×d	Dynamic C	Static C _o		M _P N-m		И _Y I-m	M _R	Carriage	
	W ₁	H,	Р	std.		kN	kN	Single*	Double*	Single* Double*		kN-m	kg	kg/m
SMR 25 E SMR 25 LE	23	23.5	30	20	11×9×7	27.4 33.1	57.4 73.3	0.63 1.01	3.63 5.49	0.63 1.01	3.63 5.49	0.66 0.84	0.75 0.95	3.5
SMR 30 E SMR 30 LE	28	27.5	40	20	14×12×9	39.5 49.4	82.7 110.3	1.01 1.78	5.90 9.60	1.01 1.78	5.90 9.60	1.15 1.53	1.4 1.72	5
SMR 35 E SMR 35 LE	34	30.5	40	20	14×12×9	55.6 69.6	117.0 156.0	1.63 2.86	9.59 15.57	1.63 2.86	9.59 15.57	1.98 2.63	1.95 2.45	7
SMR 45 E SMR 45 LE	45	37	52.5	22.5	20×17×14	89.3 110.6	184.1 242.2	3.27 5.6	18.48 29.56	3.27 5.6	18.48 29.56	4.18 5.5	3.9 4.5	11.2
SMR 55 E SMR 55 LE	53	43	60	30	23×20×16	127.8 163.2	256.5 351.0		30.89 53.02	5.51 10.16	30.89 53.02	6.96 9.52	6 7.9	15.6
SMR 65 LE	63	52	75	35	26×22×18	263.5	583.7	21.49	111.99	21.49	111.99	18.73	17.6	22.4


	Е	xternal	dimens	sion							Ca	rriage	e dir	nensi	on					
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	С	C ₂	S	L ₁	Т	T,	T ₂	T ₃	N	G	K	e ₁	G ₁	Grease Nipple
SMR 25 E SMR 25 LE	36	70	97.5 115.5	23.5	4.8	57	45	40	M8	65.5 83.5	9.5	20.2	10	5.8	6	12	6.6	6.5	M6	G-M6
SMR 30 E SMR 30 LE	42	90	112.4 135.2	31	6	72	52	44	M10	75.9 98.7	10	21.6	13	6.7	7	12	8	7	M6	G-M6
SMR 35 E SMR 35 LE	48	100	125.3 153.5	33	6.5	82	62	52	M10	82.3 110.5	12	27.5	15	9.5	8	12	8	7	M6	G-M6
SMR 45 E SMR 45 LE	60	120	154.2 189.4	37.5	8	100	80	60	M12	106.5 141.7	14.5	35.5	15	12.5	10	13.5	10	10	M6	G-PT 1/8
SMR 55 E SMR 55 LE	70	140	185.4 235.4	43.5	10	116	95	70	M14	129.5 179.5	17.5	41	18	15.5	11	13.5	12	7.95	M6	G-PT 1/8
SMR 65 LE	90	170	302	53.5	12	142	110	82	M16	230	19.5	56	20	26	16.5	13.5	15	15	М6	G-PT 1/8

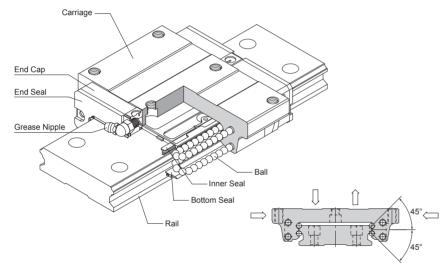

Unit: mm

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

Dimensions of SMR-S / SMR-LS

nit:	

		Extern	al dimer	sion						C	arriage	dime	nsion				
Model No.	Height H	Width W	Length L	W ₂	H ₂	В	c	S	l	L ₁	Т	N	G	K	e ₁	G ₁	Grease Nipple
SMR 25 S SMR 25 LS	40	48	97.5 115.5	12.5	4.8	35	35 50	M6	10.5	65.5 83.5	9.5	10	12	6.6	6.5	M6	G-M6
SMR 30 S SMR 30 LS	45	60	112.4 135.2	16	6	40	40 60	M8	12	75.9 98.7	10	10	12	8	7	M6	G-M6
SMR 35 S SMR 35 LS	55	70	125.3 153.5	18	6.5	50	50 72	M8	14	82.3 110.5	12	15	12	8	7	M6	G-M6
SMR 45 S SMR 45 LS	70	86	154.2 189.4	20.5	8	60	60 80	M10	19	106.5 141.7	17	20	13.5	10	10	M6	G-PT 1/8
SMR 55 S SMR 55 LS	80	100	185.4 235.4	23.5	10	75	75 95	M12	19	129.5 179.5	18	21	13.5	12	7.95	M6	G-PT 1/8
SMR 65 LS	90	126	302	31.5	12	76	120	M16	20	230	19.5	16.5	13.5	15	15	М6	G-PT 1/8


Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

			nr
U		ι.	

		Ra	ail dim	ensior	ı	Basic load	rating		Static	momen	t rating		Weig	ght
Model No.	Width W.	Height H.	Pitch P	E std.	D×h×d	Dynamic C	Static C _o	k١	И _Р I-m	k١	νι _γ I-m	M _R kN-m	Carriage kg	Rail kg/m
	**1	,	·	sta.		kN	kN	Single*	Double*	Single*	Double*	K(4 111	Ng	Kg/III
SMR 25 S SMR 25 LS	23	23.5	30	20	11×9×7	27.4 33.1	57.4 73.3	0.63 1.01	3.63 5.49	0.63 1.01	3.63 5.49	0.66 0.84	0.65 0.85	3.5
SMR 30 S SMR 30 LS	28	27.5	40	20	14×12×9	39.5 49.4	82.7 110.3	1.01 1.78	5.90 9.60	1.01 1.78	5.90 9.60	1.15 1.53	1 1.22	5
SMR 35 S SMR 35 LS	34	30.5	40	20	14×12×9	55.6 69.6	117.0 156.0	1.63 2.86	9.59 15.57	1.63 2.86	9.59 15.57	1.98 2.63	1.65 2.15	7
SMR 45 S SMR 45 LS	45	37	52.5	22.5	20×17×14	89.3 110.6	184.1 242.2	3.27 5.6	18.48 29.56	3.27 5.6	18.48 29.56	4.18 5.5	3.2 4.1	11.2
SMR 55 S SMR 55 LS	53	43	60	30	23×20×16	127.8 163.2	256.5 351.0	5.51 10.16	30.89 53.02	5.51 10.16	30.89 53.02	6.96 9.52	5.1 7	15.6
SMR 65 LS	63	52	75	35	26×22×18	263.5	583.7	21.43	111.99	21.43	111.99	18.73	13.3	22.4

12.7 wide rail type MSG series

A. Construction

B. Characteristics

The trains of balls are designed to a contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSG series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion. By design,the ability to use a single rail and to have the low profile with a low center of gravity is ideal where space is limited and high moments are required.

The patent design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

High Rigidity, Four-way Equal Load

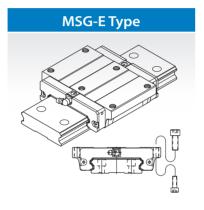
The four trains of balls are allocated to a circular contact angle at 45°, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

Self Alignment Capability

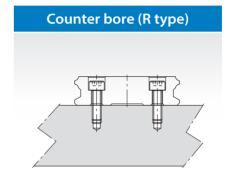
The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.


Interchangeability

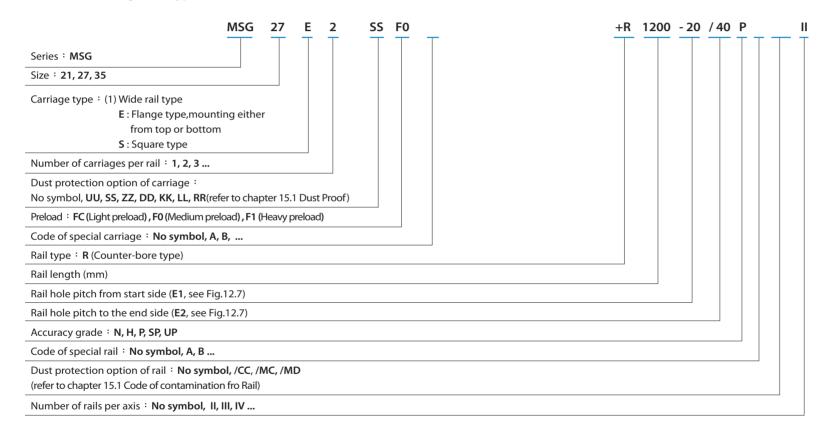
For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

C. Carriage Type

wide rail type

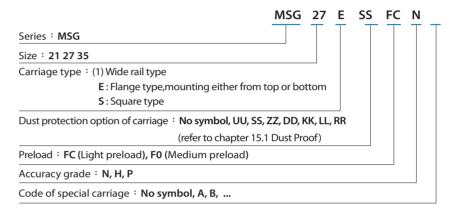


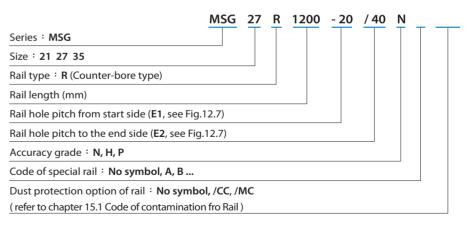
This type offers the installation either from top or bottom side of carriage.


Square type with smaller width and can be installed from top side of carriage.

D. Rail Type

E. Description of Specification


(1) Non-Interchangeable Type



(2) Interchangeable Type

Code of Carriage

Code of Rail

※*PMI* В173

F. Accuracy Grade

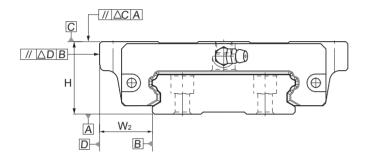


Table 1 Running Parallelism

Rail leng	gth (mm)		Running	Parallelism Va	lues(μm)	
Above	Or less	N	Н	Р	SP	UP
0	315	9	6	3	2	1.5
315	400	11	8	4	2	1.5
400	500	13	9	5	2	1.5
500	630	16	11	6	2.5	1.5
630	800	18	12	7	3	2
800	1000	20	14	8	4	2
1000	1250	22	16	10	5	2.5
1250	1600	25	18	11	6	3
1600	2000	28	20	13	7	3.5
2000	2500	30	22	15	8	4
2500	3000	32	24	16	9	4.5
3000	3500	33	25	17	11	5
3500	4000	34	26	18	12	6

A Non-Interchangeable Type

				Accuracy G	rade				
Model No.	ltem	Normal N	High H	Precision P	Super Precision SP	Ulitra Precision UP			
	Tolerance for height H	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008			
	Height difference ΔH	0.02	0.01	0.006	0.004	0.003			
21	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008			
21	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006	0.004	0.003			
	Running parallelism of surface C with surface A			ΔC (see the ta	ble 1)				
	Running parallelism of surface D with surface B	ΔD (see the table 1)							
	Tolerance for height H	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01			
	Height difference ΔH	0.02	0.015	0.007	0.005	0.003			
27	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01			
35	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007	0.005	0.003			
	Running parallelism of surface C with surface A	ΔC (see the table 1)							
	Running parallelism of surface D with surface B	ΔD (see the table 1)							

※*PMI* В175

B Interchangeable Type

Model			Accuracy Grade				
No.	ltem	Normal N	High H	Precision P			
	Tolerance for height H	±0.1	±0.03	0 -0.03			
	Height difference ΔH	0.02	0.01	0.006			
24	Tolerance for distance W ₂	±0.1	±0.03	0 -0.03			
21	Difference in distance $W_2(\Delta W_2)$	0.02	0.01	0.006			
	Running parallelism of surface C with surface A	ΔC (see the table 1)					
	Running parallelism of surface D with surface B		ΔD (see the table 1)				
	Tolerance for height H	±0.1	±0.04	0 -0.04			
	Height difference ΔH	0.02	0.015	0.007			
27	Tolerance for distance W ₂	±0.1	±0.04	0 -0.04			
35	Difference in distance $W_2(\Delta W_2)$	0.03	0.015	0.007			
	Running parallelism of surface C with surface A		ΔC (see the table 1)				
	Running parallelism of surface D with surface B	ΔD (see the table 1)					

G. Preload Grade

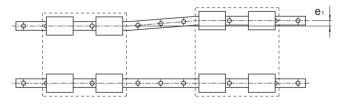
Series	Preload grade								
series	Light preload (FC)	Medium preload (F0)	Heavy preload (F1)						
MSG21									
MSG27	0~0.02C	0.03~0.05C	0.05~0.08C						
MSG35									

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

H. The Shoulder Height and Corner Radius for Installation

MSG series

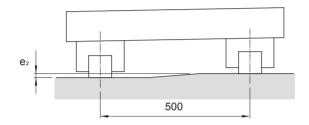
H₂


				UI	II C. 111111
Model No.	r ₁ (max.)	r ₂ (max.)	h ₁	h ₂	H ₂
21	0.4	0.4	2.5	5	3
27	0.4	0.4	2.5	7	3
35	0.8	0.8	3.5	10	4

I. Dimensional Tolerance of Mounting Surface

MSG Series

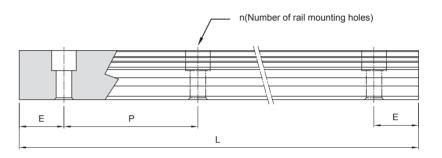
With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.


The parallel deviation between two axes (e₁)

Unit: μm

Model No.	Preload Grade								
	FC	F0	F1						
21	-	25	18						
27	-	25	20						
35	30	22	20						

Level difference between two axes (e₂)

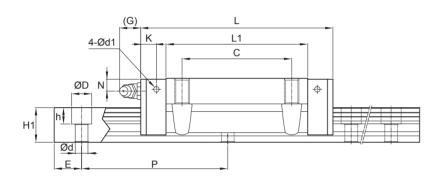


Unit: μm

Model No.	Preload Grade								
Model No.	FC	F0	F1						
21	130	85	-						
27	130	85	-						
35	130	85	70						

Note: The permissible values in table are applicable when the span is 500mm wide.

J. Rail Maximum Length and Standrad

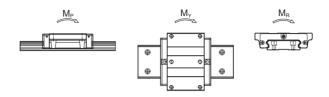


 $L=(n-1)\times P+2\times E$

- L: Total Length of rail (mm)
- n: Nuber of mounting holes
- P: Distance between any two holes (mm)
- *E*: Distance from the center of the last hole to the edge *(mm)*

Model No.	Standard Pitch (P)	Standard (E _{std.})	Minimum (E _{min.})	Max (L₀ max.)
MSG 21	60	20	5	4000
MSG 27	60	20	6	4000
MSG 35	60	20	7	4000

Dimensions of MSG-E



Unit: mm

	External dimension						Carriage dimension									
Model No.	Height	Width	Length	W ₂	H ₂	В	_	E	S×ℓ		т	N	_	V	al	Grease
	Н	W	L	VV ₂	П2	٥	C	Г	3 % (Lı	'	IN	G	K	u ₁	Nipple
MSG21 E	21	68	59	15.5	3	60	29	22	M5	40	8	5	12	2.5	2.5	G-M6
MSG27 E	27	80	73	19	3	70	40	24	M6	51.8	8	6	12	3	3.3	G-M6
MSG35 E	35	120	105.2	25.5	4	107	60	40	M8	77.6	11.2	6	12	8.55	3.3	G-M6

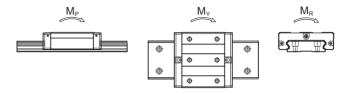
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

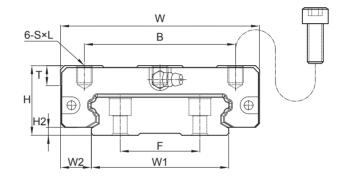
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

Bolt Size				
S ₁	S ₂			
M5	M4			
M6	M5			
M8	M6			
	S ₁ M5 M6			

		Rail dimension				Basic load	d rating	Static moment rating					Weight	
Model No.	*******	Height		_	D×h×d	Dynamic C	Static C _o	M _P kN-m		M _Y kN-m		M _R	Carriage	Rail
	W ₁ H ₁	H ₁ P st	std.		kN	kN	Single*	Double*	Single*	Double*	kN-m	kg kg/m	kg/m	
MSG21 E	37	11	50	15	7.5×5.3×4.5	7	12.1	0.08	0.46	0.08	0.46	0.22	0.25	2.86
MSG27 E	42	15	60	20	7.5×5.3×4.5	12.4	20.2	0.15	0.87	0.15	0.87	0.42	0.31	4.49
MSG35 E	69	19	80	20	11×9×7	30.7	48.6	0.65	3.6	0.65	3.6	1.67	0.99	9.4

Specifications | Dimensions of MSG

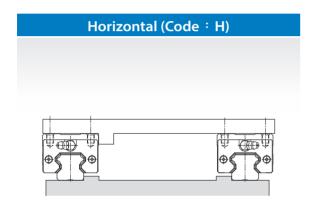

Dimensions of MSG-S

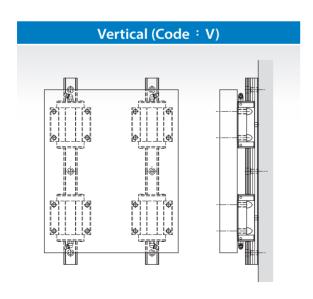

Unit: mm

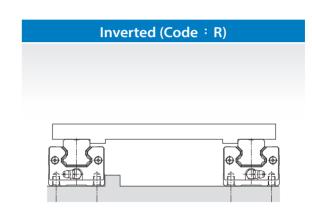
		External dimension						Carriage dimension									
Model No.	Height	Width	Length	W ₂	H ₂	В	_	г	S×ℓ		т	N	G	К	۵	Grease	
	Н	W	L	VV ₂	П2	Ь	C	Г	3 × t	Lı	'	IN	G	K	u ₁	Nipple	
MSG21 S	21	54	59	8.5	3	31	19	22	M5×6	40	8	5	12	2.5	2.5	G-M6	
MSG27 S	27	62	73	10	3	46	32	24	M6×6	51.8	10	6	12	3	3.3	G-M6	
MSG35 S	35	100	105.2	15.5	4	76	50	40	M8×8	77.6	10	6	12	8.55	3.3	G-M6	

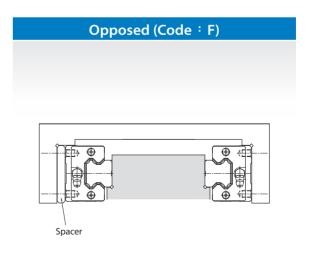
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and C_{100} for 100 km is $C=1.26 \times C_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

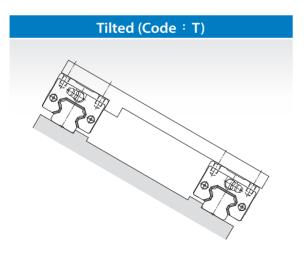




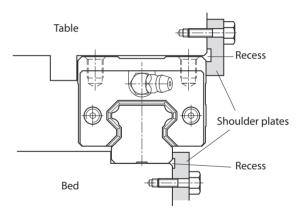

		Rail dimension				Basic load	l rating	Static moment rating					Weight	
Model N	width	Height			D×h×d	Dynamic D×h×d C		M _P kN-m		M _Y kN-m		M _R	Carriage	Rail
	W ₁ H ₁	P std.		kN	kN	Single*	Double*	Single*	Double*	kN-m	kg	kg/m		
MSG21	S 37	11	50	15	7.5×5.3×4.5	7	12.1	0.08	0.46	0.08	0.46	0.22	0.25	2.86
MSG27	S 42	15	60	20	7.5×5.3×4.5	12.4	20.2	0.15	0.87	0.15	0.87	0.42	0.31	4.49
MSG35	s 69	19	80	20	11×9×7	30.7	48.6	0.65	3.6	0.65	3.6	1.67	0.99	9.4


13.1 Installation Direction of Linear Guideway

The installation direction of linear guideway depends on machine structure and load direction. When oil lubrication is applied, the lubricant routing will be varied with different applications. Therefore, please specify the direction of installation when ordering.

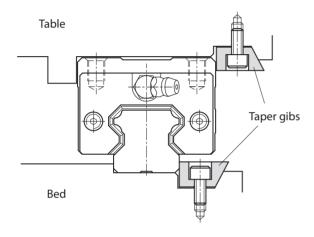


Wall mounting (Code: K)

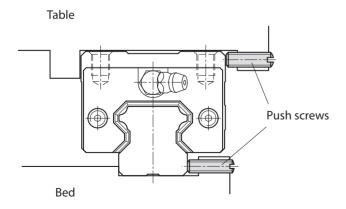


13.2 Fixing Methods of Linear Guideway

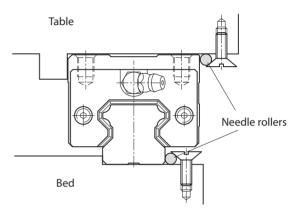
The rail and carriage could be displaced when machine receives vibration or impact. Under such situation, the running accuracy and service life will be degraded, so the following fixing methods are recommended for avoiding such situation happens.


Shoulder plate (Recommended)

For this method, the rail and carriage should stick out slightly from the bed and table. To avoid interference from corner of carriage and rail, the shoulder plate should have a recess.

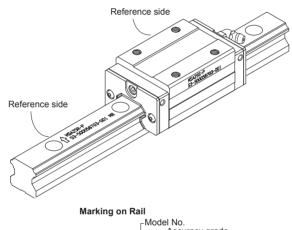

Taper gib

A slight tightening of the taper gib could generate a large pressing force to the linear guideway, and this may cause the rail to deform. Thus, this method should be carried with caution.


Push screw

Due to the limitation of installation space, the size of bolt should be thin.

Needle roller

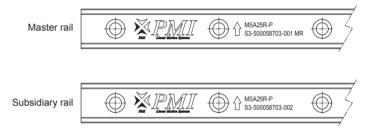

The needle roller is pressed by the taper section of the head of screw, so the position of screw should be paid attention.

13.3 Marking on Master Linear Guideway and Combined Case

Recognizing of Reference Side

The reference side of rail is assigned by the arrow sign which is marked together with the model code and lot number on top surface of rail while that of carriage is the side which is opposed to the side marked with lot number and model code marked, as shown below.

MSA25R-P S3-500058703-001 MR Squence No.


Marking on Carriage Model No. Accuracy grade MSA25S-P S3-500058703-001 Sequence No.

Lot No.

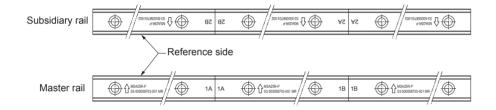
Recognizing of reference side

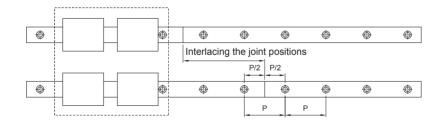
Recognizing of Master Rail

Linear rails to be applied on the same plane are all marked with the same serial number, and "MR" is marked at the end of serial number for indicating the master rail, shown as the figure below. The reference side of carriage is the surface where is ground to a specified accuracy. For normal grade (N), it has no mark "MR" on rail which means any one of rails with same serial number could be the master rail.

Recognizing of master rail

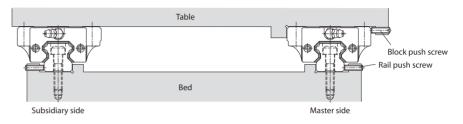
Combined Use of Rail and Carriage


For combined use, the rail and carriage must have the same serial number. When reinstalling the carriage back to the rail, make sure they have the same serial number and the reference side of carriage should be in accordance with that of rail.

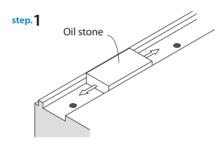

Installation of Linear Guideway

For Butt-joint Rail

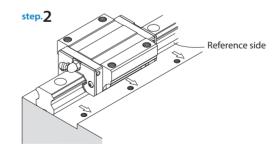
When applied length of rail longer than specified max. length, the rails can be connected to one another. For this situation, the joint marks indicate the matching position. Accuracy may deviate at joints when carriages pass the joint simultaneously. Therefore, the joints should be interlaced for avoiding such accuracy problem.

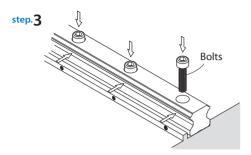


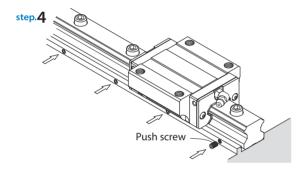
Identification of butt-joint rail

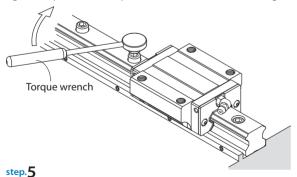


Staggering the joint position


14.1 Installation of Linear Guideway When Machine Subjected to **Vibration and Impact**

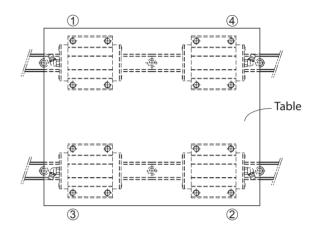

(1) Installation of rail


Prior to installation, the burrs, dirt, and rust preventive oil should be removed thoroughly.


Gently place the linear guideway on the bed, and pushing it against the reference side of bed.

Check for correct bolt play and temporarily tighten all bolts.

Tighten the push screw in sequence to ensure the rail close matching the reference side of bed.



Tighten all bolts to the specified torque. The tightening sequence should start from the right side to the left side. By doing this, the original accuracy could be achieved.

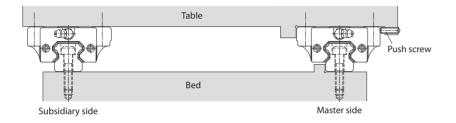
step.6

Follow the same procedure for the installation of remaining rails.

(2) Installation of carriage

step. 1

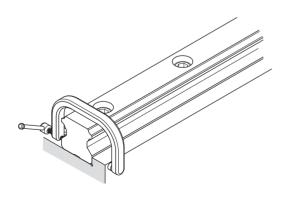
Gently place table onto carriages and temporarily tighten the bolts.


step.2

Tighten the push screw to hold the master rail carriage against the table reference side, and position the table.

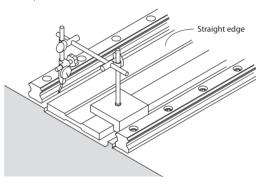
step.3

Fully tighten all bolts on both master and subsidiary sides. The tightening process should be followed by the order of \bigcirc to \bigcirc .

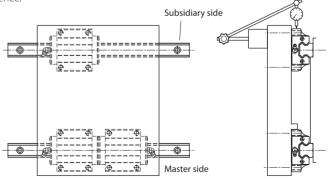

14.2 Installation of Linear Guideway without Push Screws

(1) Installation of master rail

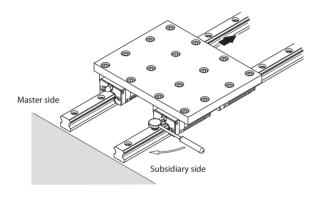
Using a vise


First tighten the mounting bolts temporarily, than use a C vise to press the master rail to reference side. Tighten the mounting bolts in sequence to specified torque.

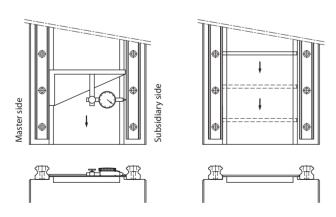
(2)Installation of subsidiary rail


Using a straight edge

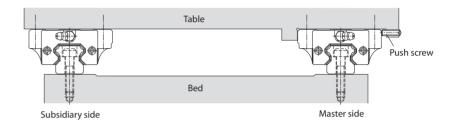
Place a straight edge between the two rails and position it parallel to the reference side rail which is temporarily tightened by bolts. Check the parallelism with dial gauge, and align the rail if necessary. Then tighten the bolts in sequence.


Using a table

Tighten two master side carriages and one subsidiary side carriage onto the table. Then temporarily tighten another subsidiary carriage and rail to the table and bed. Position a dial gauge on the table and have the probe of dial gauge contact the side of the subsidiary carriage. Move the table from the rail end and check the parallelism between the carriage and the subsidiary rail. Then tighten the bolts in sequence.

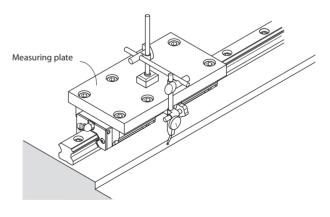

Compare to master rail side

Tighten two master side carriages and one subsidiary side carriage onto the table. Then temporarily tighten another subsidiary carriage and rail to the table and bed. Move the table from one rail, check and align the parallelism of subsidiary rail based on moving resistance. Tighten the bolts in sequence.

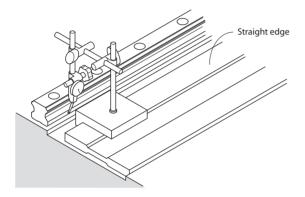


Using a jig

Using the special jig to align the parallelism between the reference side of master rail and that of subsidiary rail from one rail end to another. Tighten the mounting bolts in sequence.

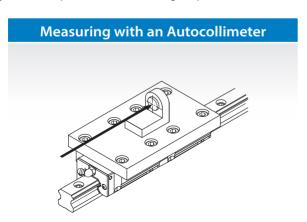

14.3 The Installation of Carriage of Linear Guideway without the Reference Side for Master Rail

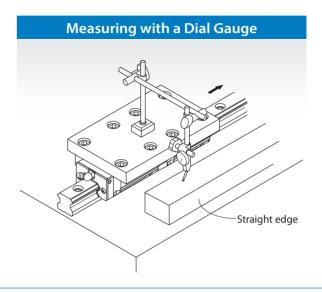
(1) Mounting the master rail


Using a temporary reference side

Two carriages are tightened together onto the measuring plate, and set up a temporary reference surface near the rail mounting surface on the bed. Check and align the parallelism of rails and then tighten bolts sequentially.

Using a straight edge


At first temporarily tighten rail onto the bed, then use a dial gauge to align the straightness of rail. Tighten the bolts in sequence.



(2) The installation of subsidiary carriage and rail is same as the prior examples

14.4 Accuracy Measurement after Installation

The running accuracy can be obtained by tightening the two carriages onto the measuring plate. A dial gauge or autocollimeter is sued for measuring the accuracy. If a dial gauge is used, the straight edge should be placed as close to carriage as possible for accurate measurement.

14.5 The Recommended Tightening Torque for Rails

The improper tightening torque could affect the mounting accuracy, so tightening the bolts by torque wrench to specified toque is highly recommended. Different types of mounting surface should have different torque value for applications.

Unit: N-m

Bolt Model	Torque Value								
Boit Model	Iron	Cast iron	Aluminum						
M2	0.6	0.4	0.3						
M3	2	1.3	1						
M4	4	2.7	2						
M5	8.8	5.9	4.4						
M6	13.7	9.2	6.8						
M8	30	20	15						
M10	68	45	33						
M12	120	78	58						
M14	157	105	78						
M16	196	131	98						
M20	382	255	191						

^{* 1} N-m = 0.738 lbf-ft

B200

15.1 Dust Proof

A. Code of contamination protection

Code of contamination protection for Carriage

MSA \ MSB Series :

Code	Contamination Protection
no symbol	Scraper(both ends)
UU	Bidirectional end seal(both ends)
SS	Bidirectional end seal+Bottom seal
ZZ	SS+Scraper
DD	Double bidirectional end seal+Bottom seal
KK	DD+Scraper
LL	Low frictional end seal
RR	LL+Bottom seal
HD	high dust end seal +high dust inner and bottom seal (supply MSA15~35 , MSB15~20)

SME \ SMR \ MSR Series :

Code	Contamination Protection
no symbol	Scraper(both ends)
UU	Bidirectional end seal(both ends)
SS	Bidirectional end seal+Bottom seal+Inner seal
ZZ	SS+Scraper
DD	Double bidirectional end seal+Bottom seal+Inner seal
KK	DD+Scraper

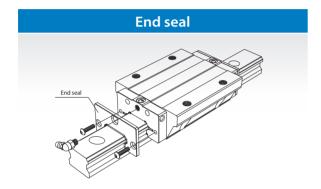
MSC \ MSD Series :

Code	Contamination Protection
LL	Low frictional end seal
RR	LL+Bottom seal

Code of contamination protection for Rail

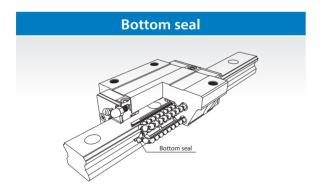
MSA \ MSB \ SME \ MSR \ SMR Series :

Code	Contamination Protection
/CC	Cover strip
/MC	Copper bolt cap
/MD	Stainless bolt cap

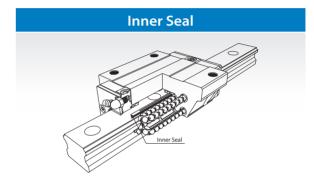

Note: There are two metallic bolt caps of copper and stainless that could be supplied by customer's choice.

Seal materials choice

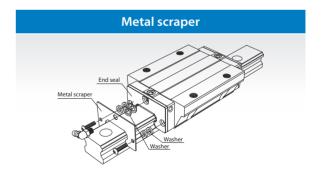
Beside the standard seal NBR that FKM (Fluorocarbon Rubber) seal or HNBR (Hyfrogenated Nitrile Butadiene Rubber) seal could be supplied as requirement by customer's choice.


B. Contamination protection

Each series of linear guideway offers various kinds of dust protection accessory to keep the foreign matters from entering into the carriage.

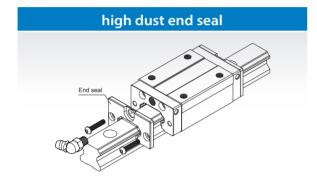


Tow types sealing are available:

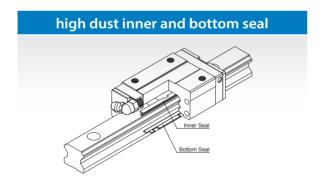

- 1. Bidirectional seal for high dust protection required.
- 2. Monodirectional seal for low frictional resistance required.

Prevent the inclusion of foreign matters form the bolt hole.

Preventing the inclusion of foreign matters from bottom of carriage.



Removing spatters, iron chips , and large foreign matters as well as protecting the end seals.



Enhanced Dust-proof

According to the environmental and operational conditions, *PMI* provide enhanced contamination protection could be supplied as requirement by customer's choice, the excellent of enhanced contamination protection to prevent dust enter the carriage.

offer special design bidirectional end seal

Prevent the foreign matters enter the carriage from the bolt hole.

Types of seal to the carriage overall length, see the table shown as below

MSA Series

Unit: mm

Model No.	No symbol	UU	SS	ш	RR	ZZ	DD	KK	HD
15	1	-	-	-	-	6	5	11	1
20	1.4	-	-	-	-	7	5.6	12.6	0.4
25	1.4	-	-	-	-	7	5.6	12.6	0.4
30	1.4	-	-	-	-	7	5.6	12.6	0.4
35	0.6	-	-	-	-	7.8	7.2	15	-
45	0.6	-	-	-	-	7.8	7.2	15	-
55	-	-	-	-	-	7.8	7.8	15.6	-
65	-	-	-	-	-	7.8	7.8	15.6	-

MSB Series

ľ	Model No.	No symbol	υυ	SS	ш	RR	ZZ	DD	кк	HD
	15	-	-	-	-	-	5	5	10	1
	20	1	-	-	-	-	7	6	13	-
	25	1	-	-	-	-	7	6	13	-
	30	1	-	-	-	-	7	6	13	-
	35	0.6	-	-	-	-	7.8	7.2	15	-

SME Series

Unit: mm

Model No.	no symbol	UU	SS	ZZ	DD	КК
15	0.4	-	-	6	5.6	11.6
20	1	-	-	7	6	13
25	1	-	-	7	6	13
30	1.4	-	-	7	5.6	12.6
35	1	-	-	7.8	6.8	14.6
45	0.6	-	-	7.8	7.2	15

MSR \ SMR Series

Unit: mm

Model No.	no symbol	UU	SS	ZZ	DD	КК
25	2	-	-	6	6	12
30	2	-	-	7	6	13
35	2	-	-	7	6	13
45	1.6	-	-	7	6.4	13.4
55	0.8	-	-	7.8	7.2	15
65	0.8	-	-	7.8	7.8	15.6

MSG Series

Unit: mm

Model No.	no symbol	UU	SS	ZZ	DD	КК
21	1.4	-	-	7.4	6	13.4
27	1.4	-	-	7.4	6	13.4
35	1.4	-	-	7.8	6	13.8

Resistance value of seal

MSA series

The maximum resistance value of MSA series with seals type UU when it is applied with grease is shown below.

Unit: N

Model No.	Resistance			
model No.	UU	HD		
15	2	18		
20	3.5	19		
25	4	30		
30	6	23		
35	10	25		
45	12	-		
55	18	-		
65	30	-		

MSB series

The maximum resistance value of MSB series with seals type UU when it is applied with grease is shown below.

Unit: N

Model No.	Resistance				
Model Ho.	UU	HD			
15	2	18			
20	3.5	19			
25	4	-			
30	6	-			
35	10	-			

MSC \ MSD series

The maximum resistance value of MSC series with seals type LL when it is applied with grease is shown below.

MSD

MSC

Unit: N

Unit: N

7	0.08
9	0.1
12	0.4
15	0.8

Model No.	Resistance
7	0.4
9	0.8
12	1.1
15	1.3

MSR > SMR series

The maximum resistance value of MSR and SMR series with seals type UU when it is applied with grease is shown below.

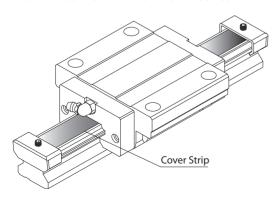
Unit: N

Model No.	Resistance
25	4.5
30	8
35	12
45	18
55	20
65	35

SME series

The maximum resistance value of SME series with seals type UU when it is applied with grease is shown below.

Unit: N

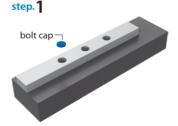

Model No.	Resistance
15	2
20	3.5
25	4
30	6
35	10
45	12

C. Cover Strip

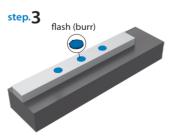
A special designed of cover strip is used to cover the bolt hole to prevent the foreign matters from entering the carriage. Please specify when ordering.

Note: When mounting the cover strip the rail needs to be machined. Indicate that the cover strip is required when ordering the guideway. The cover strip could not increase the height of rail.

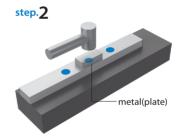
MSA \ MSB \ SME \ MSR \ SMR series

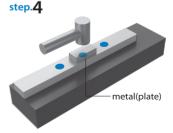

D. Caps for rail mounting hole

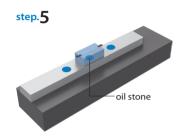
A special designed of cap is used to cover the bolt hole to prevent the foreign matters from entering the carriage. According to difference of application, *PMI* provide two kind of caps for selection, made by plastic and metal. The metallic cap is for opyion,please specify when ordering. The plastic cap is mounted by using a plastic hammer with a flat pad placed on the top,until the top of cap is flush to the top surface of rail. The dimension of caps for different sizes of rail is shown.


Installation of plastic and metal cap

According to the environmental and operational conditions, choose plastic or metal, plastic and metal model cap size, please refer to Table I Table II.


The steps of installing bolt cap with rail by below indicated figures


Put the cap into the bolt hole of rail.


Clear the "shaving " away from the side of bolt hole.

Put the plate on the cap, then pound it into the bolt of rail with rubber hammer vertically.

Continue pounding the cap until the cap is on the same plane with the top surface of rail.

Use oil stone to polish the surface of caps and mop them with clean bunny cloth. And finally check the installation is good for smoothing by your finger.

Install attention:

Owing to the side of hole is very sharp during installation. Therefore, pay special attention for safety in case of finger and hands be slashed.

Table I

Code of Plastic Cap	Bolt Size	Rail Model					
МЗС	МЗ		MSB15R				
M4C	M4	MSA15R	MSB15U		SME15R		MSG21R MSG27R
M5C	M5	MSA20R	MSB20R		SME20R		
M6C	M6	MSA25R	MSB25R MSB30R	MSR25R	SME25R	SMR25R	MSG35R
M8C	M8	MSA30R MSA35R	MSB35R	MSR30R MSR35R	SME30R SME35R	SMR30R SMR35R	
M12C	M12	MSA45R		MSR45R	SME45R	SMR45R	
M14C	M14	MSA55R		MSR55R		SMR55R	
M16C	M16	MSA65R		MSR65R		SMR65R	

Table II

	ode of allic Cap	Bolt Size		Rail Model								
N	14МС	M4	MSA15R	MSB15U		SME15R		MSG21R MSG27R				
N	15MC	M5	MSA20R	MSB20R		SME20R						
N	16МС	M6	MSA25R	MSB25R MSB30R	MSR25R	SME25R	SMR25R	MSG35R				
N	18МС	M8	MSA30R MSA35R	MSB35R	MSR30R MSR35R	SME30R SME35R	SMR30R SMR35R					
М	12MC	M12	MSA45R		MSR45R	SME45R	SMR45R					
М	14MC	M14	MSA55R		MSR55R		SMR55R					
М	16MC	M16	MSA65R		MSR65R		SMR65R					

15.2 Lubrication

A well lubrication is important for maintaining the function of linear guideway. If the lubrication is not sufficient, the frictional resistance at rolling area will increase and the service life will be shortened as a result of wear of rolling parts.

Two primary lubricants are both grease and oil used for linear motion system, and the lubrication methods are categorized into manual and forced oiling. The selection of lubricant and its method should be based on the consideration of operating speed and environment requirement.

Grease lubrication

The grease feeding interval will be varied with different operating conditions and environments. Under normal operating condition, the grease should be replenished every 100km of travel. The standard grease is lithium-based grease No.2. Moving the carriage back and forth with minimum stroke length of length of 3 carriages after the carriages been greased. To assure the grease is evenly distributed inside of carriage, the mentioned process should be repeated twice at least.

Grease amount to be bed

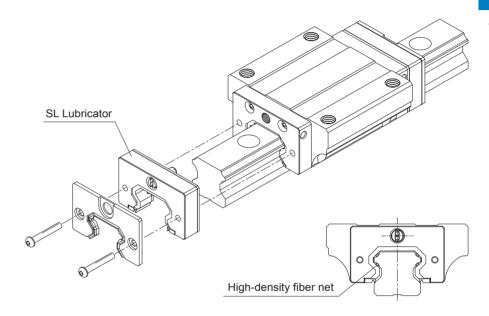
nount for nishing(cm³)
0.4
0.7
1.2
1.9
2.7
5.4
9.0
17.2
0.1
0.2
0.5
0.7
2.7
1.5
2.3
3.2
5.7
8.7
-
0.02
0.05
0.08
0.16
0.06
0.14
0.24
0.50
0.5
0.9
1.4
2.0
3.2
4.4
2.0
2.9
4.2
7.0
10.7

Model No.	Initial Feeding Amount(cm³)	Amount for Replenishing(cm³)
-	-	-
MSA 20L	3.1	1.0
MSA 25L	5.1	1.7
MSA 30L	8.2	2.7
MSA 35L	11.8	3.9
MSA 45L	23.0	7.7
MSA 55L	38.8	12.9
MSA 65L	77.8	25.9
MSB 15	1.0	0.3
MSB 20	1.5	0.5
MSB 25	2.8	0.9
MSB 30	4.5	1.5
MSB 35L	11.8	3.9
MSR 25L	5.5	1.8
MSR 30L	8.7	2.9
MSR 35L	12.3	4.1
MSR 45L	22.0	7.3
MSR 55L	34.3	11.4
MSR 65L	64.8	21.6
MSC 7L	0.11	0.04
MSC 9L	0.24	0.08
MSC 12L	0.42	0.14
MSC 15L	0.80	0.27
MSD 7L	0.28	0.09
MSD 9L	0.60	0.20
MSD 12L	1.07	0.36
MSD 15L	2.18	0.73
-	-	-
SME 20L	3.6	1.2
SME 25L	5.2	1.7
SME 30L	8.1	2.7
SME 35L	13.0	4.3
SME 45L	18.5	6.2
SMR 25L	7.2	2.4
SMR 30L	11.0	3.7
SMR 35L	16.0	5.3
SMR 45L	26.5	8.8
SMR 55L	42.6	14.2
SMR 65L	76.1	25.4
MSG 21	1.2	0.4
MSG 27	2.1	0.7
MSG 35	5.6	1.9

Oil lubrication

The recommended viscosity of oil is 30~150 cst, and the recommended feeding rate per hour is shown as table below. The installation other than horizontal may caused the oil unable to reach raceway area, so please specify the installed direction your linear guideway applied. Reference is shown in Section 13.1 Installation Direction of Linear Guideway.

Oil lubrication feeding rate


Model No.	Initial Feeding Amount(cm³)	Feeding Rate (cm³/hr)		
15	0.6	0.2		
20	0.6	0.2		
25	0.9	0.3		
30	0.9	0.3		
35	0.9	0.3		
45	1.2	0.4		
55	1.5	0.5		
65	1.8	0.6		
MSG 21	0.6	0.2		
MSG 27	0.9	0.3		
MSG 35	0.9	0.3		

Note:

When the operating stroke length less than the sum of length of two carriages, the lubrication fitting should be applied on both ends of carriage for adequacy. Moreover, if the stroke length less than a half of the length of a carriage, the carriage should be moved back and forth up to the length of two carriages while lubricating.

A. SL Lubricator

1. Construction and Characteristics

Characteristics

PMI SL lubricator unit is designed with an oil reservoir which equipped with a high-density fiber net. Through the fiber net the lubricant can be steadily fed onto the surface of raceway to satisfy the required lubricating function.

1. Lengthening the interval between maintenance works

Contrary to the oil losing problem caused from ordinary lubrication, the SL lubricator effectively and evenly distribute needed amount of oil on to ball raceway during the movement. Therefore, the interval between maintenance works can be greatly extended.

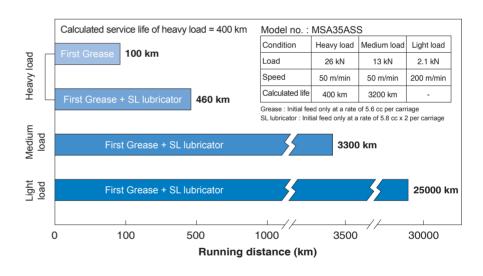
2. To avert the pollution

Through the use of SL lubricator, only the needed amount of oil will be fed for the purpose of lubrication, thereby the oil is almost nothing to lose in application. As a result, the environment will not be contaminated by waste oil.

3. Cost reduction

Saving the expense from oil loss and lubricating device.

4. Enables the most suitable oil for the purpose of use to be selected


The SL lubricator makes it possible to select the most proper lubricant for your application of linear guideway.

2. Performance

Lengthening the interval between maintenance works

By using the SL lubricator, the interval between maintenance work can be lengthened at all load rating.

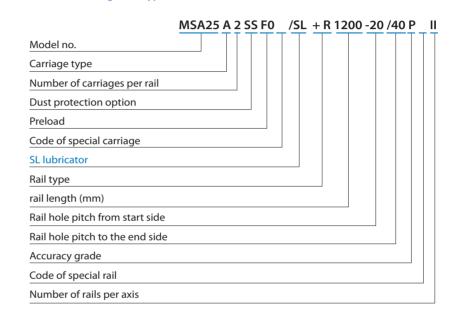
Running Test without Replenishment of Lubricant

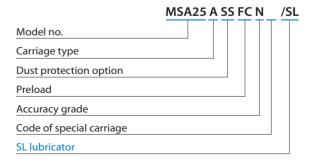
Effective use of lubricant

Since only the needed amount of lubricant will be applied to needed location, thereby effective use of lubricant can be achieved and the waste of lubricant can also be avoided.

Annual Lubricant Consumption per Carriage

Supplied amount of lubricant


Amount of oil contained in SL Lubricator 5.8 cc x 2 / carriage = 11.6 cc

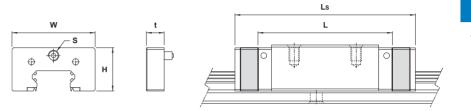

Forced lubrication 0.3 cc/hr x 8 hrs/day x 260 days/year = 624 cc

3. Description of Specification

(1) Non-Interchangeable Type

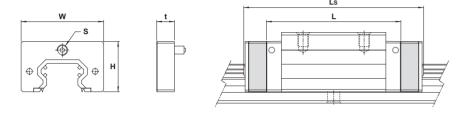
(2) Interchangeable Type Carriage

4. Dimensions of the SL Lubricator


MSA series

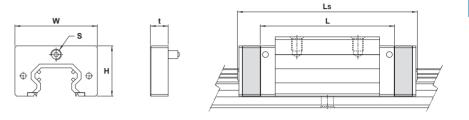
		SL L	ubricator	dimension (r	nm)	Carriage dimension (mm)		
Model No.		Height H	Width W	Thickness t	Tapped hole S	Standard length L	SL Lubricator overall length Ls	
MSA 15SL	A/E/S	19	31.2	10	M4	56.3	81.3	
MSA 20SL	A/E/S	21.2	42.8	10	M6	72.9	92.9	
MISA ZUSL	LA/LE/LS	21.2	42.0	10	IVIO	88.8	108.8	
MSA 25SL	A/E/S	28.5	46.8	10	M6	81.6	101.6	
	LA/LE/LS	26.5	40.0	10	IVIO	100.6	120.6	
MSA 30SL	A/E/S	32	57	10	M6	97	117	
MISA SUSL	LA/LE/LS	32	37	10	IVIO	119.2	139.2	
MSA 35SL	A/E/S	36.5	68	10	M6	111.2	131.2	
MSA SSSL	LA/LE/LS	30.3	08	10	IVIO	136.6	156.6	
MSA 45SL	A/E/S	49	83.6	15	1/8PT	137.7	167.7	
MSA 433L	LA/LE/LS	43	65.0	13	1/011	169.5	199.5	
MSA 55SL	A/E/S	53	97	15	1/8PT	161.5	191.5	
MSA 333L	LA/LE/LS	55	91	13	1/07 1	199.5	229.5	
MSA 65SL	A/E/S	67	120	15	1/8PT	199	229	
MSA 65SL	LA/LE/LS	07	120	13	1/071	253	283	

Note*: Supply the Dust proof series(UU imes SS imes ZZ imes LL imes RR)


MSB series

		SL L	ubricator	dimension (ı	mm)	Carriage dimension (mm)		
Model N	Height H	Width W	Thickness t	Tapped hole S	Standard length L	SL Lubricator overall length Ls		
MSB 15SL	TE/TS	18.5	33	10	M4	40	65	
WISD 153E	E/S	10.5	33	10	171-4	57	82	
MSB 20SL	TE/TS	21.2	40.8	10	M6	48	68	
IVISD 203L	E/S	21.2	40.6	10	IVIO	67	87	
MSB 25SL	TE/TS	24.5	47	10	M6	60.2	80.2	
WI3D 233L	E/S	24.5	47	10	IVIO	82	102	
MCD 20CI	TE/TS	30.8	57	10	146	68	88	
MSB 30SL	E/S	30.8	5/	10	M6	96.7	116.7	
	TE/TS					78	98	
MSB 35SL	E/S	37	68.5	10	M6	112	132	
	E/3					137.5	157.5	

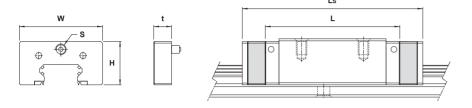
Note*: Supply the Dust proof series(UU \ SS \ ZZ \ LL \ RR)


MSR series

		SL L	ubricator (dimension (ı	mm)	Carriage dimension (mm)		
Мос	Height H	Width W	Thickness t	Tapped hole S	Standard length L	SL Lubricator overall length Ls		
MSR 25SL	E/S	30.2	47	10	M6	97.5	117.5	
MISK 255L	LE/LS	30.2	47	10	IVIO	115.5	135.5	
MSR 30SL	E/S	34.5	58.6	10 I	M6	112.4	132.4	
IVION SUSE	LE/LS	34.3	36.0		IVIO	135.2	155.2	
MSR 35SL	E/S	40.5	69	10.3	M6	125.3	145.9	
INION 333L	LE/LS	40.5	09	10.5	IVIO	153.5	174.1	
MSR 45SL	E/S	50.9	84	15.3	1/8PT	154.2	184.8	
IVISIT 433E	LE/LS	30.9	04	13.3	1/01 1	189.4	220	
MSR 55SL	E/S	58.5	98	15.3	1/8PT	185.4	216	
INION DOOL	LE/LS	36.5	90	13.3		235.4	266	
MSR 65SL	LE/LS	76.5	122	15	1/8PT	302	332	

Note*: Supply the Dust proof series(UU \ SS \ ZZ)

SMR series

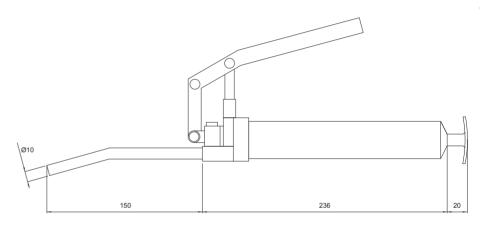


		SL L	ubricator	dimension (r	mm)	Carriage dimension (mm)		
Model No.		Height H	Width W	Thickness t	Tapped S	Standard length L	SL Lubricator overall length LS	
SMR 25SL	E/S	30.2	47	10	M6	97.5	117.5	
SIVIR 255L	LE/LS	30.2				115.5	135.5	
SMR 30SL	E/S	34.5	E0.6	58.6 10	M6	112.4	132.4	
SIVIK SUSL	LE/LS	34.3	36.0		IVIO	135.2	155.2	
SMR 35SL	E/S	40.5	69	10.3	M6	125.3	145.9	
SIVIN SSSL	LE/LS	40.5		10.5		153.5	174.1	
SMR 45SL	E/S	50.9	84	15.3	1/8PT	154.2	184.8	
SIVIN 455L	LE/LS	50.9	04	13.3	1/071	189.4	220	
SMR 55SL	E/S	58.5	98 15.	15.3	1/8PT	185.4	216	
SIVIK SSSL	LE/LS	36.5		13.3		235.4	266	
SMR 65SL	LE/LS	76.5	122	15	1/8PT	302	332	

Note*: Supply the Dust proof series(UU \ SS \ ZZ)

B224 × PMI B225

SME series



		SL I	ubricator	dimension (r	nm)	Carriage	dimension (mm)
Model No.		Height H	Width W	Thickness t	Tapped hole S	Standard length L	SL Lubricator overall length Ls
SME 15SL	E/S	20.1	33.2	10	M4	64.4	84.4
SIVIE 133L	LE/LS	20.1	33.2	10	1714	79.4	99.4
SME 20SL	E/S	22.8	3 41.4	.4 10	M6	78.5	98.5
SIVIE ZUSL	LE/LS	22.0	41.4		IVIO	97.5	117.5
SME 25SL	E/S	26.1	47.2 10	10	M6	92	112
SIVIE 253L	LE/LS	20.1		IVIO	109	129	
SME 30SL	E/S	33.5	58.5	4.0	146	107.6	127.6
SIVIE SUSL	LE/LS	33.3	36.3	10	M6	132.6	152.6
SME 35SL	E/S	38.5	68	10	M6	120.6	140.6
SIVIE 333L	LE/LS	36.3	00	10	1010	150.6	170.6
SME 45SL	E/S	49	02.6	45	1/8PT	140	170
	LE/LS	49	83.6	15		174.5	204.5

Note*: Supply the Dust proof series(UU \ SS \ ZZ)

B. Lubrication equipment - Grease gun

Grease gun used different nozzles installed on different oiling the supplementary grease.

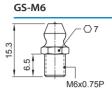
Size and working condition:

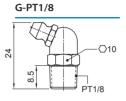
discharge pressure 15MPa

discharge rate 0.35g / stroke

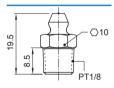
weight (excluding the grease) 680g

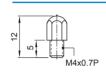
overall length about 400mm width about 120mm


outside diameter of nozzle Φ 10mm

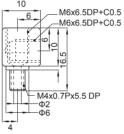

C. Grease nipple and piping joint

Grease nipple


G-M6

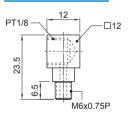


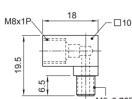
GS-PT1/8

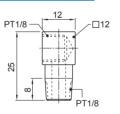


G-M4

TS-A(Connect Fitting)

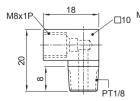

OL-C

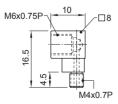



Oil piping joint

OL Type

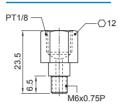
OL-A

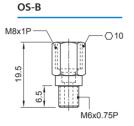


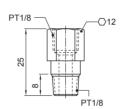


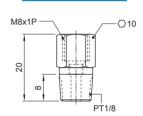
OL-D

OL-E


OL-B




OS Type

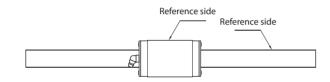

OS-A

OS-C

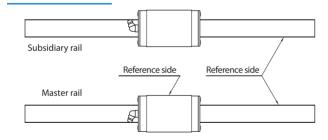
OS-D

	Model No.						Dust Proof Type						
Model No.					S	S	D	D	Z	Z	K	K	
MSA15	MSB15	SME15				G-M4	OL-E	G-M4L	OL-EL	G-M4L	OL-EL	G-M4L	OL-EL
MSA20	MSB20	SME20				G-M6	GS-M6	G-M6M	GS-M6M	G-M6M	GS-M6M	G-M6L	GS-M6L
MSA25	MSB25	SME25	SMR25	SMR25	MSG21				OI-BI	OI-AI			
MSA30	MSB30	SME30	SMR30	SMR30	MSG27	OL-A	OL-B	OL-AL			OL-BL	OL-AL	OL-BL
MSA35	MSB35	SME35	SMR35	SMR35	MSG35	OS-A	OS-B	OS-AL	OS-BL	OS-AL	OS-BL	OS-AL	OS-BL
MSA45		SME45	SMR45	SMR45		G-PT1/8	GS-PT1/8	G-PT1/8L	01.01	G-PT1/8L	01.01	G-PT1/8L	01.01
MSA55			SMR55	SMR55		OL-C	OL-D	OL-CL	OL-DL	OL-CL	OL-DL	OL-CL	OL-DL
MSA65			SMR65	SMR65		OS-C	OS-D	OS-CL	OS-DL	OS-CL	OS-DL	OS-CL	OS-DL

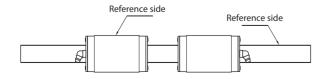
Note:1.MSA15-ZZ and MSA15-DD use the nipple"G-M4"

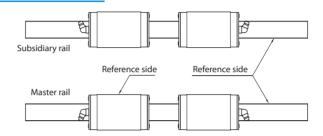

2.When MSB15 use the nipple "OL-E", change the nipple to "OL-EL"

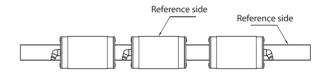
D. The Relationship between the Direction of Lubrication and the Reference Side

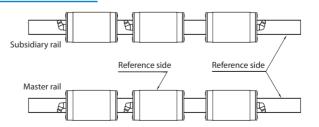

The standard lubrication fitting is grease nipple (G-M6 \times G-PT1/8 \times G-M4). The code of different types of application for lubrication fittings are shown below. For cases other than specified, please contact us for confirmation.

The relationship between the direction of lubrication and the reference side

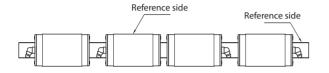

Code: C1R1


Code: C1R2

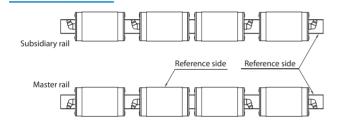

Code: C2R1


Code: C2R2

Code: C3R1

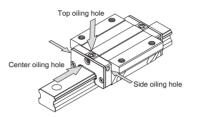


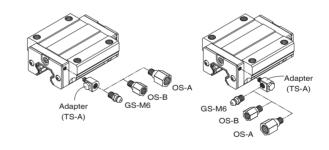
Code: C3R2



 $\times PMI$

Code: C4R1

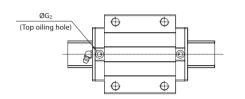

Code: C4R2

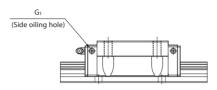

E. Lubrication position

The standard mounting locating of carriage is at the center of both ends. As for lateral and top application, please specify when ordering. As shown as below, the lateral application is achieved by using a adapter to connect the grease/oil fitting to the hole on the carriage.

Lubrication location

Lateral usage (Adapter only for MSA and MSB series)


Mode	el No.	Center	Side			
Mode	ei ivo.	Nipple	G1	Nipple		
MSA 15	MSB 15	G-M4	M4×0.7P	G-M4		
MSA 20	MSB 20	G-M6	M4×0.7P	G-M4		
MSA 25	MSB 25	G-M6	M4×0.7P	G-M4		
MSA 30	MSB 30	G-M6	M4×0.7P	G-M4		
MSA 35	MSB 35	G-M6	M4×0.7P	G-M4		
MSA 45		G-PT1/8	M4×0.7P	G-M4		
MSA 55	MSA 55		M4×0.7P	G-M4		
MSA 65		G-PT1/8	M4×0.7P	G-M4		


Note: MSA and MSB series have no top oiling hole for option.

16

Precautions of Linear Guideway

Model No.	Center	Sic	de	Тор		
Model No.	Nipple	G1	Nipple	G2	O-ring	
SME 15	G-M4	M4×0.7P	G-M4	-	-	
SME 20	G-M6	M4×0.7P	G-M4	-	-	
SME 25	G-M6	M4×0.7P	G-M4	-	-	
SME 30	G-M6	M6×0.75P	G-M6	10.2	P7	
SME 35	G-M6	M6×0.75P	G-M6	10.2	P7	
SME 45	G-PT1/8	M6×0.75P	G-M6	10.2	P7	

Model No.		Center	Side		Тор	
		Nipple	G1	Nipple	G2	O-ring
SMR 25	MSR 25	G-M6	M6×0.75P	G-M6	10.2	P7
SMR 30	MSR 30	G-M6	M6×0.75P	G-M6	10.2	P7
SMR 35	MSR 35	G-M6	M6×0.75P	G-M6	10.2	P7
SMR 45	MSR 45	G-PT1/8	M6×0.75P	G-M6	10.2	P7
SMR 55	MSR 55	G-PT1/8	M6×0.75P	G-M6	10.2	P7
SMR 65	MSR 65	G-PT1/8	M6×0.75P	G-M6	10.2	P7

MadalNa	Center	Side		Тор	
Model No.	Nipple	G ₁	Nipple	G ₂	O-ring
MSG 21	G-M6	M4×0.7P	G-M4	-	-
MSG 27	G-M6	M4×0.7P	G-M4	6.1	P3
MSG 35	G-M6	M4×0.7P	G-M4	7.3	P4

Handling

- Tilting the linear guideway may cause the carriage falling out from the rail by their own weight.
- 2. Beating or Dropping the linear guideway may cause its function to be damage, even if the product looks intact.
- 3. Do not disassemble the carriage, this may cause contamination to enter into the carriage or decrease the installation accuracy.
- Carrying excessive weight for linear guideway, by two or more people or handling equipment, to avoid causing personal injury or damage of the workpiece possibly.
- 5. Note that to prevent foreign material and foreign body, causing the slider failure, damage and loss of function.

Lubrication

- 1. Please remove the anti-rust oil in advance and lubricate it before using.
- 2. Do not mix lubricants with others.
- 3. If you are using oil as lubricant, the oil may not be distributed evenly to the ball groove that depending on the application of the mounting orientation. Please contact *PMI* in such case.
- 4. Moving the carriage back and forth with minimum stroke length of length of 3 carriages after the carriages been greased. To assure the grease is evenly distributed inside of carriage, the mentioned process should be repeated twice at least.

Using

- 1. The temperature of the place where linear guideways are used should not exceed 80°C.

 A higher temperature may damage the plastic end cap.
- 2. If the carriage must be removed from the rail or remounted onto the rail, be sure to use the dummy rail.
- 3. Using under special conditions, such as constant vibration, high dust or the temperature exceed our suggested...etc., please contact *PMI*.

Storage

When storing the linear guideway, enclose it in a package and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

